
EVOLUTE OF A QUADRATIC

TRISTRAM DE PIRO

For the quadratic y − x2 = 0;

dy
dx

= 2x

At a general point (a, a2), we have that;

mtangent = 2a

mnormal = − 1
2a

The equation of the normal through (a, a2) with gradient − 1
2a

is
given by;

y−a2
x−a = − 1

2a

Similarly, the equation of the normal through (a + h, (a + h)2) with
gradient − 1

2(a+h)
is given by;

y−(a+h)2

x−(a+h)
= − 1

2(a+h)

These two lines intersect when;

a2 − (x−a)
2a

= (a + h)2 − x−(a+h)
2(a+h)

and rearranging;

x−(a+h)
2(a+h)

− x−a
2a

= (a + h)2 − a2 = 2ah + h2

and cross multiplying;

2a(x− (a + h))− 2(a + h)(x− a) = 2a(2(a + h))(2ah + h2)

Cancelling terms;
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−hx = 4a(a + h)(2ah + h2)

x = −4a(a + h)(2a + h)

Taking the limit as h→ 0;

x = −8a3

y = a2 − (−8a3−a)
2a

= 5a2 + 1
2

The centre of curvature of the point (a, a2 is (−8a3, 5a2 + 1
2
)

As a varies, we trace out the evolute of the quadratic y = x2. It is a
cubic with the equation;

(y − 1
2
)3 = 125x2

64

y = 1
2

+ 5x
2
3

4

Note that as a traces out the right hand side of the quadratic, a
traces out the left hand side of the evolute curve and vice-versa.

We define the involute curve to be the locus of normals to the qua-
dratic. The evolute is the dual curve to the involute.

Note on duality;

To any line y = mx+ c, we can associate a point in the dual projec-
tive space P 2(R), given by [−m : 1 : −c] = [m

c
: −1

c
: 1] in projective

coordinates. The dual curve is the curve defined by the tangents to the
curve in P 2(R). If we compute the dual of y = nx2, we get y = x2

4n
.

This follows as the equation of the tangent to the curve at (a, na2) is
given by;

y−na2
x−a = 2na

y = 2nax− 2na2 + na2 = 2nax− na2

which corresponds to the point [−2na : 1 : na2] = [− 2
a

: 1
na2

: 1]. It
follows that the dual of the dual curve to y = nx2 is;
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y = x2

4 1
4n

= nx2

so the dual of the dual of y = x2 is itself. This holds in general.
Similarly, to a point (a, b) ∈ R2, we can associate a line in the dual
space given by the locus of all the lines which pass through the point.
We have the relation R(p, l) if p ∈ l, and it is true that;

R(p, l) iff R(l∗, p∗)

where ∗ is the dual. Given the involute is the locus of normals to
the quadratic. If we fix a point p on the involute and draw a chord
l′ between p and p′ on the involute, then R(p, l′) and R(p′, l′), so that
R(l′∗, p∗) and R(l′∗, p′∗), that is l′∗ lies on the intersection of the nor-
mals corresponding to p and p′ on the original quadratic. Taking the
limit l′′ of chords as p′ → p, the limit l′′∗ corresponds to the centre of
curvature where the normal p∗ intersects the quadratic. The limit of
chords l′′ is just the tangent to the involute, so the evolute is the dual
curve to the involute, and conversely.
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