
ELECTROLYSIS, ACIDS AND PH

TRISTRAM DE PIRO

Abstract. We makes some observations about Faraday’s First
Law of Electrolysis, different definitions of acids and applications
to biochemistry. We relate pH to cell potential.

1. Faraday’s Law of Electrolysis

In [1], Faraday makes three claims;

(704) The chemical decomposing action of current is constant for a
constant quantity of electricity.

(783) The chemical power of a current of electricity is in direct pro-
portion to the absolute quantity of electricity which passes.

(732) With regard to water. The quantity of it decomposed is ex-
actly proportional to the quantity of electricty which has passed.

The last claim has become the basis for Faraday’s first law of elec-
trolysis which is now interpreted as saying that the mass m of elements
deposited at an electrode is directly proportional to the charge ρ;

m
ρ

= Z

where Z is the electro-chemical equivalent of the substance.

However, the claims (704), (783) seem to make a stronger statement,
which implies the claim (732), namely that the rate of chemical reaction
is proportional to the electricity passed or ρ = It, for a direct current
I, (†). The Nernst equation in a generalised form, without error terms,
see [3], Lemma 8.4, states that;

4F (E(T1, P1)−E◦(T1)) = (∂G
∂ξ

)T,P (T1, P1)−(∂G
∂ξ

)T,P (T1, P
◦
1 ) = −RT1ln(Q(T1, P1))

(∗∗)
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for the reaction 2H2O + 4e−(R) → 2H2 + O2 + 4e−(L), (∗). If we
multiply the charge ρ by a factor of λ, then, according to the formula
ρ = CE, treating the electrode/cathode assembly as a capacitor, we
change the potential E by a factor of λ as well. We can also multiply
the equation (∗) by a factor of λ, changing the stochiometric coeffi-
cients by a factor of λ, without changing (∗∗). We have that;

(∂G
∂ξ

)T,P =
∑c

i=0 νiµi

see Lemma 2.5 of [3], so that the change in stochiometric coefficients
is equivalent to changing (∂G

∂ξ
)T,P by a factor of λ as well, if the chem-

ical potentials µi, 0 ≤ i ≤ c, are unchanged. It follows that, for the
equation (∗∗) to balance, ln(Q(T1, P1)) must be changed by a factor λ,
and Q changes to Qλ. We have that;

Q =
∏

0≤i≤c x
νi
i

and, if x0 ' 1, where substance 0 is the solvent H2O, we can obtain
Qλ, by altering x0 to xλ0 , n0 to nλ0 , with a small alteration in the other
substances i, 1 ≤ i ≤ c, and n changed roughly to nλ. It follows that
the rate of change of concentration;

(xλ0)′ = λxλ−1
0 x′0 ' λx′0

changes roughly by a factor of λ. If we assume that λ ' 1, so n is
roughly unchanged, we obtain that, n′0 changes roughly by a factor of
λ as well, giving (†).

We then have that, for 2 different quantities {ρ1, ρ2}, that;

ρ2
ρ1

=
n′0,2
n′0,1

=
ρ2
t
ρ1
t

= I2
I1

so that, observing the rates {n′0,2, n′0,1} are constant;

∆n0,2

∆n0,1
=

n′0,2t

n′0,1t
= I2t

I1t
= ρ2

ρ1

so that the amount of substance formed ξ, proportional to the mass
m formed at the electrodes, is proportional to the amount of electricity
passed, which is (732). Faraday makes no claim about the electro-
chemical equivalent Z as the constant of proportionality.
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2. Acids and Bases

Definition 2.1. We define the ph of a substance X by;

ph(X) = −log10([H+])

= −log10( n
Vd

)

= −log10(0.001)− log10( n
V

)

= 3− log10( n
V

)

where [H+] = n
Vd

= 0.001n
V

= 1000n
Vc

is the concentration of hydrogen

ions in moles/litre, n is the number of moles of hydrogen ions, V is the
volume in m3, Vc is the volume in cm3, Vd is the volume in litres. We
have that ph(H2O) = 7. We call substance X an acid if ph(X) < 7,
an alkali if ph(X) > 7 and neutral if ph(X) = 7. We call substance
X a Bronsted acid if it disassociates in a neutral substance Y to form
H+ ions, and an Arrhenius acid if it increases the concentration of H+

ions, when added to water.

Lemma 2.2. If an acid X with ph(X) = x is added to water, to form
substance Y , with ph(Y ) = y, then;

x < y < 7

In particularly, Y is an acid. If an alkali X with ph(X) = x is added
to water, to form substance Y , with ph(Y ) = y, then;

7 < y < x

If a neutral X with ph(X) = 7 is added to water, to form substance
Y , then ph(Y ) = 7. A substance X is an acid iff it is an Arrhenius
acid. An acid or an Arrhenius acid is a Bronsted acid. Water is a
Bronsted acid but not an acid or an Arrhenius acid.

Proof. If X is an acid, we have that;

x = −log10(n1

V1
) < 7

−log10(n2

V2
) = 7
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where {n1, n2} are the number of moles of hydrogen ions in the alkali
X and water, {V1, V2} are the volumes of the alkali and water respec-
tively, measured in litres. Then;

y = −log10(n1+n2

V1+V2
)

= −log10(n1

V1
)− log10(

1+
n2
n1

1+
V2
V1

)

= x− log10(
1+

n2
n1

1+
V2
V1

)

We have that;

−log10(
1+

n2
n1

1+
V2
V1

) > 0

iff log10(
1+

n2
n1

1+
V2
V1

) < 0

iff
1+

n2
n1

1+
V2
V1

< 1

iff 1 + n2

n1
< 1 + V2

V1

iff n2

n1
< V2

V1

iff n2

V2
< n1

V1

iff log10(n2

V2
) < log10(n1

V1
)

iff −log10(n2

V2
) > −log10(n1

V1
)

iff 7 > x

which is true by the definition of an acid, so that x < y. Similarly;

y = −log10(n1+n2

V1+V2
)

= −log10(n2

V2
)− log10(

1+
n1
n2

1+
V1
V2

)

= 7− log10(
1+

n1
n2

1+
V1
V2

)

We have that;
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−log10(
1+

n1
n2

1+
V1
V2

) < 0

iff log10(
1+

n1
n2

1+
V1
V2

) > 0

iff
1+

n1
n2

1+
V1
V2

> 1

iff 1 + n1

n2
> 1 + V1

V2

iff n1

n2
> V1

V2

iff n1

V1
> n2

V2

iff log10(n1

V1
) > log10(n2

V2
)

iff −log10(n1

V1
) < −log10(n2

V2
)

iff x < 7

again, so that y < 7. The proof is virtually the same if X is an
alkali, reversing the inequalities. If X is neutral, with ph(X) = x = 7,

then just use the first part of the proof, noting that log10(
1+

n2
n1

1+
V2
V1

) = 0

iff x = 7. For the next claim, if X is an acid, with ph(X) = x < 7,
then, by the previous results, if X is added to water to form substance
Y , then ph(Y ) = y < 7 as well. In particularly, we must have that
−log10([H+]Y ) < −log10([H+]water), so that [H+]Y > [H+]water and
the hydrogen ion concentration is increased, so that X is an Arrhe-
nius acid. Conversely, if X is an Arrhenius acid, then adding water
to form substance Y , we have that the hydrogen ion concentration is
increased relative to water, so that ph(Y ) = y < 7. If ph(X) = x ≥ 7,
then, by the previous results, ph(Y ) = y ≥ 7, which is a contradic-
tion, so ph(X) = x < 7 and X is an acid. For the next claim, if X
is an acid with ph(X) < 7, then nX

VX
> 10−7 = [H+]water. For fixed

δ1 ' 0, δ2 ' 0, corresponding to the removal of some H+ ions and cor-
responding molecules/ions from X, with a corresponding volume, we
can assume, for sufficiently large VX and corresponding nX , obtained
by increasing the volume of X, that;

nX−δ1
VX−δ2

= nX
VX

(
1− δ1

nX

1− δ2
VX

) ' nX
VX

> 10−7 = [H+]water
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With the smaller amount of substance X ′ and ph(X ′) < 7, suppose
we have a substance Y with ph(Y ) = y > 7 that does not react with
X ′, then nY = 10−yVY and nX′ = 10ε−7VX′ , with ε > 0. We have that;

−log10(
nX′+nY
VX′+VY

) = 7

iff −log10(
nX′+10−yVY
VX′+VY

) = 7

iff nX′ + 10−yVY = 10−7(VX′ + VY )

iff VY =
nX′−10−7VX′

10−7−10−y

= VX′(

nX′
VX′
−10−7

10−7−10−y
)

= VX′(
10ε−7−10−7

10−7−10−y
)

= cVX′ > 0

where c > 0. Choosing the volume of Y to be cVX′ and adding it
to X ′, we obtain a neutral mixture Z with ph(Z) = 7. Adding the δ1

moles of H+ ions with corresponding volume δ2 to Z, we clearly get
a disassociation of X in a neutral substance Z, with a formation of
H+ ions, so X is a Bronsted acid. For the final claim, we have that
ph(water) = 7 but it disassociates in the neutral substance water to
form H+ ions.

�

3. pH and Electrolysis

Definition 3.1. We define pH(T, P ) = −log10(a(H+))

where a is activity. Assuming we have a solute in a dilute solution,
so we can ignore activity coefficients, we have that a(H+) = [H+], so
that pH = ph− 3.

Lemma 3.2. pH

' −Flog10(e)
RT

(E − E◦)− log10(e)ln(
P (H2)
P◦ )

2

' −log10(e)ln(P (H2)
P ◦

)− log10(e)ln(
P (O2)
P◦ )

4
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where pH(T, P ) is the pH at the potential difference E(T, P ), P (H2)
is the hydrogen pressure at (T, P ), P (O2) is the oxygen pressure at
(T, P ).

Proof. We consider the equations for electrolysis of pure water, with
platinum anode and cathode, and a DC power supply;

2H2 → 4H+ + 4e− (oxidation, anode)(L)

O2 + 4H+ + 4e− → 2H2O (reduction, cathode)(R)

which combine to give;

2H2 +O2 + 4H+(R) + 4e−(R)→ 2H2O + 4H+(L) + 4e−(L)

simplifying to;

2H2 +O2 → 2H2O

and the equations for the standard electrochemical cell, consisting of
the hydrogen anode and a silver-silver chloride cathode, immersed in a
solution of saturated KCl;

H2 → 2H+ + 2e− (oxidation, anode)(L)

AgCl + e− → Ag + Cl− (reduction, cathode)(R)

which combine to give;

H2 + 2AgCl + 2e−(R)→ 2H+(R) + 2Ag + 2Cl−(L) + 2e−(L)

simplifying to;

H2 + 2AgCl→ 2HCl + 2Ag

We assume the two cells are contained in separate flasks, with wa-
ter on the left and the standard electrochemical cell on the right, but
connected with a porous plug. The porous plug, allowing only transfer
of H+ and Cl− ions, should establish an equilibrium between H+ ions
in both flasks, with no liquid potential. There will be an imbalance
of Cl− ions on both sides of the junction, which creates a potential,
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ELJ , but this potential will not change much at different temperatures
and pressures due to the saturation of KCl on one side. We can en-
sure the potential of the anode for water electrolysis is the same as the
potential of the cathode in the electrochemical cell, by attaching them
with a piece of platinum wire. Let E denote the potential difference
of the DC power supply, between the cathode and the anode for wa-
ter electrolysis, and let V denote the potential difference between the
cathode and the anode of the electrochemical cell. Then we have, by
construction, that;

0 = φ(R, rightcell)− φ(L, leftcell)

= φ(R, rightcell)−φ(L, rightcell)+φ(R, leftcell)+ELJ−φ(L, leftcell)

= V + E + ELJ

so that V = −E −ELJ . We assume the temperature T of the water
and KCl are the same, but not the pressure P .

By the Nernst equation for electrolysis of water, we have that;

E − E◦ = −RT
4F
ln(Q)

= −RT
4F
ln( a(H2O)2

a(H2)2a(O2)
)

' RT
4F
ln(a(H2)2a(O2))

Assuming thermal equilibrium between the two flasks, but allow-
ing for different pressures. Let V (T, P ′) correspond to E(T, P ) and
V ′(T, P ′′) correspond to E◦(T ). As E = −V −ELJ , E◦ = −V ′ −ELJ ,
ELJ doesn’t vary, we obtain that, E−E◦ = −(V ′−V ). By the Nernst
equation for the electrochemical cell, assuming that a(Cl−) doesn’t
vary by the saturation of the KCl solution, that the H2 gas is at the
same pressure in the two cells, and the concentrations of the H+ ions
are the same, a(H+)(T, P ◦) = a(H2)(T, P ◦) = 1, we have that;

V (T, P ′)− V ′(T, P ′′) = (V − V ◦)(T, P ′)− (V ′ − V ′◦)(T, P ′′)

= −RT
2F
ln(Q′)(T, P ′) + RT

2F
ln(Q′)(T, P ′′)

= −RT
2F
ln(a(H+)2a(Ag)2a(Cl−)2

a(H2)a(AgCl)2
)(T, P ′)+RT

2F
ln(a(H+)2a(Ag)2a(Cl−)2

a(H2)a(AgCl)2
)(T, P ′′)
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' −RT
2F
ln(a(H+)2a(Cl−)2

a(H2)
)(T, P ′) + RT

2F
ln(a(H+)2a(Cl−)2

a(H2)
)(T, P ′′)

= −RT
2F
ln(a(H+)2

a(H2)
)(T, P ′) + RT

2F
ln(a(H+)2

a(H2)
)(T, P ′′)

= −RT
2F
ln(a(H+)2

a(H2)
)(T, P ) + RT

2F
ln(a(H+)2

a(H2)
)(T, P ◦)

= −RT
2F
ln(a(H+)2

a(H2)
)(T, P )

so that;

ln(a(H+)) = − F
RT

(V − V ′) + ln(a(H2))
2

= F
RT

(E − E◦) + ln(a(H2))
2

' F
RT

(E − E◦) +
ln(

P (H2)
P◦ )

2

' F
RT

(RT
4F
ln(a(H2)2a(O2))) + ln(a(H2))

2

= ln(a(H2))
2

+ ln(a(O2))
4

+ ln(a(H2))
2

= ln(P (H2)
P ◦

) +
ln(

P (O2)
P◦ )

4

and;

pH = −log10(a(H+)) = −log10(e)ln(a(H+))

' −Flog10(e)
RT

(E − E◦)− log10(e)ln(
P (H2)
P◦ )

2

' −log10(e)ln(P (H2)
P ◦

)− log10(e)ln(
P (O2)
P◦ )

4

�

Lemma 3.3. In water electrolysis;

pH(T, P ) ' −4.91log10(e)(P−P ◦)
4RT

− log10(e)ln(
P (H2)
P◦ )

2

' −4.91log10(e)(P−P ◦)
4RT

− log10(e)ln(
kxH2

(T,P )

P◦ )

2

k is the constant for H2 in Raoult’s law, xH2(T, P ) is the concentra-
tion of H2 dissolved in H2O.
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In particularly, as E(T, P ) → ∞, if we encourage the electrolysis
reaction;

P →∞, P (H2) remains bounded and pH(T, P )→ −∞.

Proof. By the Nernst Equation for electrolysis of water, Lemma 8.1 of
[3], we have that at electrical chemical equilibrium (T, P ) and (T, P ◦);

E − E◦(T, P ) = −RTln(Z(T,P ))
4F

− ε(T,P )
4F

(A)

where Z(T, P ) is the activity coefficient. The activity coefficient is
determined in Lemma 7.3 of [3], we use the approximation;

Z(T, P ) = e
ε(P−P◦)−ε(T,P )

RT (B)

(iii) Substituting Z from (B) into (A), the error term cancels and
we have that;

E − E◦(T, P ) = −ε(P−P ◦)+ε(T,P )
4F

− ε(T,P )
4F

= −ε(P−P ◦)
4F

(C)

where ε =
∑c

i=1 νiV m,i(T, P ), from [3]. Calculating ε for water elec-
trolysis, in Lemma 7.3 of [3];

ε = −4.7× 10−5

Then from (C), we have;

E − E◦(T, P ) = (4.7×10−5)(P−P ◦)
4F

(D)

Substituting (D) into the penultimate equation of Lemma 3.2;

pH ' −Flog10(e)
RT

( (4.7×10−5)(P−P ◦)
4F

)− log10(e)ln(
P (H2)
P◦ )

2

= − (4.7×10−5)log10(e)(P−P ◦)
4RT

− log10(e)ln(
P (H2)
P◦ )

2
(F )

Using Henry’s law for the soluteH2 inH2O, P (H2)(T, P ) = k(T, P )x(T, P ),
where x(T, P ) is the mole fraction of H2 dissolved in the solvent H2O,
we then obtain, from (F );
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pH ' − (4.7×10−5)log10(e)(P−P ◦)
4RT

− log10(e)ln(
k(T,P )x(T,P )

P◦ )

2
(G)

so that assuming we keep x(T, P ) away from 0, (RB), which is equiv-

alent to encouraging the electrolysis reaction, the term− log10(e)ln(
k(T,P )x(T,P )

P◦ )

2

remains bounded. For the final claim, by (D), increasing the potential
E → ∞ forces P → ∞, and by (G), together with the remark (RB),
pH(T, P )→ −∞.

�

Lemma 3.4. Maximising the concentration of H+ ions is compatible
with maximising the rate of the electrolysis reaction and converting wa-
ter into steam if we proceed along a verical zig-zag path in the (T, P )
plane, above P = P ◦. We can maximise the rate of the fuel cell reac-
tion if we proceed right along a horizontally inclined zig-zag path in the
(T, P ) plane.

Proof. By the definition of pH and Lemma 3.3, maximising the con-
centration of H+ ions is equivalent to lowering pH is equivalent to in-
creasing pressure, while favouring the electrolysis reaction, is equivalent
to increasing the potential between the cathode and the anode while
favouring water electrolysis. The relationship between temperature T
and pressure P along a maximal reaction path for water electrolysis or
a fuel cell, from Lemma 8.7 of [3], is given by;

dP
dT

=
εT−T ∂ε

∂P
(T,P )

(−ε(P−P ◦)+ε(T,P )−T ∂ε
∂T

(T,P ))
(∗)

Assuming the error term ε(T, P ) = 0 as a first approximation, and
substituting into (∗), we obtain that;

dP
dT

= εT
−ε(P−P ◦) = − T

(P−P ◦)

Using a Matlab step by step solution to differential equation, or us-
ing the theoretical result in [3], that the maximal reaction paths are
given by;

(P − P ◦)2 = −T 2 + c (circles centred at the point (0, P ◦))

where c ∈ R, we obtain as an approximation that P = f + eT , with
e < 0, (∗∗), provided P > P ◦. The direction along the path for max-
imising water electrolysis is given by increasing pressure and lowering
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temperature, provided it is done sufficiently slowly, as can be verified
experimentally and theoretically, for P > P ◦, see [4]. If we substitute
(∗∗) into (D) of the previous lemma, we obtain;

E − E◦(T, P ) = (4.7×10−5)(f+eT−P ◦)
4F

Keeping pressure constant gives chemical equilibrium, see [4], so
E◦(T, P ) is constant g, by assumption of electrical and chemical equi-
librium;

E(T, P ) = d+ rT (r < 0)

so the potential is increasing, with decreasing temperature, so en-
courages the production of H+ ions. If we proceed along a vertical
zig-zag path, in the (T, P ) plane, above P = P ◦, we encourage electrol-
ysis on the left moving diagonals, and equilibrium on the right moving
diagonals, by the classification of the dynamic equilibrium paths;

P = P ◦ + Rln(c)T
ε

where c ∈ R, see Lemma 3.5 of [3]. This maintains the mole fraction
of H2 away from zero, and encourages the electrolysis reaction overall.
As the potential is increasing, using the result of Lemma 3.3, we also
encourage the production of H+ ions. It also allows us to convert wa-
ter into steam during the reaction. If we proceed along a horiontally
inclined zig-zag path to the right, above P = P ◦, we have equilib-
rium on the upward slopes, and encourage the fuel cell reaction on the
downward paths, with a decreasing potential, as the reverse direction
to maximising water electrolysis, see [3]. Clearly, the mole fraction of
H2 will approach 0 and the pH increases.

�

Lemma 3.5. Given a feasible path γ in the temperature pressure plane,
if PW is the power;

PW (t) = (−(λ+ βT (t))− εP (t))(1
3
(5(ln(Q)) � γ′12(t))n(t))

where λ = ∆H◦ − εP ◦

β = ∆G◦(T )−∆H◦

T
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Proof. We can calculate the energy used to achieve this amount of sub-
stance formation along the reaction path. We have that the energy
E(t0) is given by;∫ t0

0
dE
dt
dt

where dE
dt

= PW is the power given by the formula PW (t) =
V (t)I(t), V (t) is the potential between the anode and the cathode,
and I(t) is the current. We have that;

I(t) = dQ(t)
dt

where the total charge passed;

Q(t) = 4Fξ(t)

so that, see [3];

I(t) = 4F dξ
dt

= 4F
3

(5(Q) � γ′12(t))x2
1x2n

and x1(t) = n1(t)
n(t)

= n10−2ξ(t)
n0−ξ(t) , x2(t) = n2(t)

n(t)
= n20−ξ(t)

n0−ξ(t) , n(t) = n0−ξ(t),
where {n10, n20} are the initial molar amounts of hydrogen and oxygen.

We use the fact that, Q = (P
◦

k1
)2(P

◦

k2
)e

ε(P−P◦)
RT = Ae

ε(P−P◦)
RT , with error

terms and Q0 = e
ε(P−P◦)
RT without. Using the Nernst equation;

V (t) = V ◦(t)− RTln(Q0(t))
4F

= V ◦(t)− RT (t)
4F

[ ε(P (t)−P ◦)
RT (t)

]

= − 1
4F

(∂G
∂ξ

)(T,P ◦) − RT (t)
4F

[ ε(P (t)−P ◦)
RT (t)

]

= − 1
4F

(λ+ εP ◦ + βT (t))− ε
4F

(P (t)− P ◦)

= − 1
4F

(λ+ βT (t))− εP (t)
4F

so that;
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PW (t) = (− 1
4F

(λ+ βT (t))− εP (t)
4F

)(4F
3

(5(Q) � γ′12(t))x1(t)2x2(t)n(t))

= (−(λ+ βT (t))− εP (t))(1
3
(5(Q) � γ′12(t))x1(t)2x2(t)n(t))

' (−(λ+ βT (t))− εP (t))(1
3
(5(Q) � γ′12(t))n(t)

Q
)

= (−(λ+ βT (t))− εP (t))(1
3
(5(ln(Q)) � γ′12(t))n(t))

where λ = ∆H◦ − εP ◦

β = ∆G◦(T )−∆H◦

T

see [3].

�

4. Error Terms

Lemma 4.1. The equilibrium vapor pressure curve for water is given
by;

P (T ) ' (5.1× 1010)e−
4898
T

where pressure is measured in pascals, temperature in kelvin.

Proof. By the Clausius-Clapeyron relation, we have that for pressures
{P1, P2} on the equilibrium curve, with corresponding temperatures
{T1, T2};

ln(P2

P1
) = −∆Hm

R
( 1
T2
− 1

T1
)

where ∆Hm is the molar enthalpy change of vaporisation, and ∆Hm '
40.65 × 103 for water, R is the gas constant, R ' 8.3. At The boiling
point of water T1 = 373 in kelvin, we have that P1 = P ◦ = 101325 in
pascals, so that;

ln( P2

101325
) = −∆Hm

R
( 1
T2
− 1

T1
)

= −40.65×103

8.3
( 1
T2
− 1

373
)

P2 = 101325e
− 40.65×103

8.3
( 1
T2
− 1

373
)
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' 101325e
−4898( 1

T2
− 1

373
)

' (5.1× 1010)e
− 4898

T2

�

Remarks 4.2. We have, using the phase rule for an ideal solution in
equilibrium with its vapour, and using the ideal gas law, see [2], that;

µ
(sol)
i (T, P ) = µ

(g)
i (T, Pi) = µ

◦(g)
i (T ) +RTln( Pi

P ◦
)

µ
◦(sol)
i (T ) = µ

(g)
i (T, Pi,◦) = µ

◦(g)
i (T ) +RTln(

Pi,◦
P ◦

)

µ
(sol)
i (T, P ) = µ

◦(sol)
i (T )−RTln(

Pi,◦
P ◦

) +RTln( Pi
P ◦

)

= µ
◦(sol)
i (T ) +RTln( Pi

Pi,◦
) (∗)

where Pi is the equilibrium partial vapour pressure for the mixture at
temperature and pressure (T, P ), Pi,◦ is the equilibrium partial vapour
pressure for the mixture at temperature and pressure (T, P ◦).

By the definition of an ideal solution, we have that;

µi = µ∗i +RTln(xi) (∗∗)

where, by µ∗i (T, P ), we mean the chemical potential of substance
i on its own, at temperature and pressure (T, P ). By Raoult’s law
Pi = xiP

∗
i , see [2], where P ∗i is the equilibrium vapor pressure of sub-

stance i on its own at temperature T , combined with (∗∗), we obtain;

µi = µ∗i +RTln(xi)

= µ∗i +RTln( Pi
P ∗i

)

= µ∗i +RTln( Pi
Pi,◦

)−RTln(
P ∗i
Pi,◦

) (∗ ∗ ∗)

Combining (∗), (∗ ∗ ∗), we obtain that;

µ∗i = µi −RTln( Pi
Pi,◦

) +RTln(
P ∗i
Pi,◦

)

= (µ◦i +RTln( Pi
Pi,◦

))−RTln( Pi
Pi,◦

) +RTln(
P ∗i
Pi,◦

)
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= µ◦i +RTln(
P ∗i
Pi,◦

) (†)

Letting P ∗i = Pi,◦, we obtain that µ∗i (T, P
′) = µ◦i , (∗ ∗ ∗∗), where

(T, P ′) is the temperature and pressure at which the equilibrium pres-
sure P ′∗i = Pi,◦. From (∗∗), the fact that µ∗i (T, P ) ' µ∗i (T, P

′) and
(∗ ∗ ∗∗), we obtain that;

µi ' µ◦i +RTln(xi), (∗ ∗ ∗ ∗ ∗)

as a very good approximation. This avoids the contradiction that
xi = 1 for a solution involving more than one component, at P = P ◦.
To make the results here more precise, we need to compute the error
term, but the proof is still consistent if we allow that ni(T, P ) → 0 as
P → P ◦, so that xi = ni

n
→ 1, and xi is not defined at P = P ◦.

More specifically, we have that;

µ∗i (T, P ) = µ∗i (T, P
′) + δ

where δ = µ∗i (T, P )− µ∗i (T, P ′), so that;

µi = µ◦i +RTln(xi) + δ

For Raoult’s law, see [2], we also need an approximation. We have
that, by the definition of an ideal solution, the phase rule, Dalton’s law
that each gas in a mixture of ideal gases behaves as if it were alone in
the container at the equilibrium pressures {Pi, P ∗i }, see [2], that;

µi = µ∗i +RTln(xi)

= µ∗i (T, P
∗
i ) +RTln(xi) + ε

= µ
◦(g)
i +RTln(

P ∗i
P ◦

) +RTln(xi) + ε

= µ
◦(g)
i +RTln( Pi

P ◦
)

so that;

RTln(xi) = RTln( Pi
P ◦

)−RTln(
P ∗i
P ◦

)− ε
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= RTln( Pi
Pi,◦

)−RTln(
P ∗i
Pi,◦

)− ε

where ε = µ∗i (T, P )− µ∗i (T, P ∗i ), so that (∗ ∗ ∗) becomes;

µi = µ∗i +RTln(xi)

= µ∗i +RTln( Pi
Pi,◦

)−RTln(
P ∗i
Pi,◦

)− ε (∗ ∗ ∗)′

Combining (∗), (∗ ∗ ∗)′, we obtain that;

µ∗i = µi −RTln( Pi
Pi,◦

) +RTln(
P ∗i
Pi,◦

) + ε

= (µ◦i +RTln( Pi
Pi,◦

))−RTln( Pi
Pi,◦

) +RTln(
P ∗i
Pi,◦

) + ε

= µ◦i +RTln(
P ∗i
Pi,◦

) + ε (†)′

Letting P ∗i = Pi,◦ again, we obtain that µ∗i (T, P
′) = µ◦i + ε, (∗ ∗ ∗∗)′

From (∗∗), (∗ ∗ ∗∗)′, we obtain that;

µi = µ∗i +RTln(xi)

= µ∗i (T, P
′) + δ +RTln(xi)

= µ◦i + ε+ δ +RTln(xi)

= µ◦i +RTln(xi) + γi

where γi = ε+ δ = µ∗i (T, P )− µ∗i (T, P ∗i ) + µ∗i (T, P )− µ∗i (T, P ′)

= 2µ∗i (T, P )− µ∗i (T, P ∗i )− µ∗i (T, P ′) ' 0

We have that dG = −SdT + V dP , so that, if temperature is fixed,
dG = V dP , then, for the Gibbs energy function of substance i on it
own, in the liquid phase;

µ∗i (T, P )− µ∗i (T, P ∗i ) =
G(T,P,n)−G(T,P ∗i ,n)

n

= 1
n

∫ P
P ∗i
dG
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= 1
n

∫ P
P ∗i
V dP

= 1
n

∫ P
P ∗i

nNAmi
κi(T,P )

dP

' NAmi(P−P ∗i )

κ

= Vm,i(P − P ∗i )

where κ(T, P ) is the density of substance i in the liquid phase, and
which we assume to be approximately constant, and Vm.i is the molar
volume. Similarly;

µ∗i (T, P )− µ∗i (T, P ′) '
NAmi(P−P ′)

κ

= Vm,i(P − P ′)

so that;

γi(P, T ) ' Vm,i(2P − P ∗i − P ′) ' 0

We have that the equilibrium vapour pressure P ′′ at (T, P ) for sub-
stance i on its own, is given by;

P ′′ = Pe
Vm,i(P−P )

RT

where P (T ) is the equilibrium vapour pressure of substance i on it’s
own, at temperature T , described by the Clausius-Clapeyron equation,
so that;

P ∗i = Pe
Vm,i(P−P )

RT

= P

P ′ = RT
Vm,i

log(
Pi,◦
P

) + P

γi(P, T ) ' Vm,i(2P − P − RT
Vm,i

log(
Pi,◦
P

)− P )

= 2Vm,iP − 2Vm,iP −RTlog(
Pi,◦
P

)
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Using Raoult’s law, Pi,◦ ' P ∗i,◦xi(T, P
◦), Pi,◦ = Pxi(T, P

◦)e
Vm,i(P

◦−P )

RT ,
so that;

RTlog(
Pi,◦
P

) = RTlog(Pxie
Vm,i(P

◦−P )

RT

P
)

= RTlog(Pe
Vm,i(P

◦−P )

RT xi
P

)

= RTVm,i
(P ◦−P )
RT

+RTlog(xi)

= Vm,i(P
◦ − P ) +RTlog(xi)

and then;

γi(P, T ) ' 2PVm,i − 2PVm,i − Vm,i(P ◦ − P )−RTlog(xi)

' 2PVm,i − PVm,i − P ◦Vm,i −RTlog(xi)(T, P
◦)

= Vm,i(2P − P − P ◦)−RTlog(xi)(T, P
◦)

' −RTlog(xi)(T, P
◦)

We can do the same calculation, this time taking P ∗i to be the equi-
librium vapour pressure of substance i on its own at the pressure and
temperature of the solution (T, P ), in which case we do not need an
approximation for Raoult’s law.

This time, we have that, using the same notation as above, except
for P ∗i ;

µ∗i (T, P ) = µ∗i (T, P
′) + δ

where δ = µ∗i (T, P )− µ∗i (T, P ′), so that;

µi = µ◦i +RTln(xi) + δ

For Raoult’s law, we don’t need an approximation. We have that,
by the definition of an ideal solution, the phase rule, Dalton’s law that
each gas in a mixture of ideal gases behaves as if it were alone in the
container at the equilibrium pressures {Pi, P ∗i }, that;
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µi = µ∗i +RTln(xi)

= µ
∗(g)
i (T, P ∗i ) +RTln(xi)

= µ
◦(g)
i +RTln(

P ∗i
P ◦

) +RTln(xi)

= µ
◦(g)
i +RTln( Pi

P ◦
)

so that;

RTln(xi) = RTln( Pi
P ◦

)−RTln(
P ∗i
P ◦

)

= RTln( Pi
Pi,◦

)−RTln(
P ∗i
Pi,◦

)

and taking exponentials, we obtain Raoult’s law. Then (∗ ∗ ∗) above
becomes;

µi = µ∗i +RTln(xi)

= µ∗i +RTln( Pi
Pi,◦

)−RTln(
P ∗i
Pi,◦

) (∗ ∗ ∗)′

Combining (∗) above and (∗ ∗ ∗)′, we obtain that;

µ∗i = µi −RTln( Pi
Pi,◦

) +RTln(
P ∗i
Pi,◦

)

= (µ◦i +RTln( Pi
Pi,◦

))−RTln( Pi
Pi,◦

) +RTln(
P ∗i
Pi,◦

)

= µ◦i +RTln(
P ∗i
Pi,◦

) (†)′

Letting P ∗i = Pi,◦ again, we obtain that µ∗i (T, P
′) = µ◦i , (∗ ∗ ∗∗)′

From (∗∗) above, (∗ ∗ ∗∗)′, we obtain that;

µi = µ∗i +RTln(xi)

= µ∗i (T, P
′) + δ +RTln(xi)

= µ◦i + δ +RTln(xi)

= µ◦i +RTln(xi) + γi
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where γi(T, P ) = δ = µ∗i (T, P )− µ∗i (T, P ′) ' Vm,i(P − P ′)

We have that the equilibrium vapour pressure P ′′ at (T, P ) for sub-
stance i on its own, is given by;

P ′′ = Pe
Vm,i(P−P )

RT

where P (T ) is the equilibrium vapour pressure of substance i on it’s
own, at temperature T , described by the Clausius-Clapeyron equation,
so that;

P ∗i = Pe
Vm,i(P−P )

RT

P ′ = RT
Vm,i

log(
Pi,◦
P

) + P

γi(P, T ) ' Vm,i(P − P − RT
Vm,i

log(
Pi,◦
P

))

= Vm,iP − Vm,iP −RTlog(
Pi,◦
P

)

Using Raoult’s law, Pi,◦ = P ∗i,◦xi(T, P
◦), Pi,◦ = Pxi(T, P

◦)e
Vm,i(P

◦−P )

RT ,
so that;

RTlog(
Pi,◦
P

) = RTlog(Pxie
Vm,i(P

◦−P )

RT

P
)

= RTlog(Pe
Vm,i(P

◦−P )

RT xi
P

)

= RTVm,i
(P ◦−P )
RT

+RTlog(xi)

= Vm,i(P
◦ − P ) +RTlog(xi)

and then;

γi(P, T ) ' PVm,i − PVm,i − Vm,i(P ◦ − P )−RTlog(xi)

= Vm,i(P − P ◦)−RTlog(xi)

' −RTlog(xi)(T, P
◦)

In either case, we obtain an error term which avoids the contradic-
tion that in an ideal solution, if exactly µi = µ◦i + RTlog(xi)(T, P ),
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then xi(T, P
◦) = 1, 1 ≤ i ≤ c, c > 1, whereas

∑
1≤i≤c xi = 1.

We can perform the same calculation, taking into account fugacity
δi of the gas mixture in equilibrium with the liquid solution, and a de-
viation from Raoult’s law, Pi = P ∗i γixi. We have that;

µ
(sol)
i = µ

(g)◦
i +RTln( δi(T,Pi)Pi

P ◦
)

µ
(sol)∗
i = µ

(g)◦∗
i (T, P ∗i ) = µ

(g)◦
i +RTln(

δi(T,P
∗
i )P ∗i

P ◦
)

µi − µ∗i = RTln( δi(T,Pi)Pi
P ◦

)−RTln(
δi(T,P

∗
i )P ∗i

P ◦
)

= RTln( Pi
P ∗i

) +RTln( δi(T,Pi)
δi(T,P ∗i )

)

so that;

µi = µ∗i +RTln(γixi) +RTln( δi(T,Pi)
δi(T,P ∗i )

)

= µ∗i +RTln( Pi
Pi,◦

)−RTln(
P ∗i
Pi,◦

) +RTln( δi(T,Pi)
δi(T,P ∗i )

)

µ∗i = µi −RTln( Pi
Pi,◦

) +RTln(
P ∗i
Pi,◦

)−RTln( δi(T,Pi)
δi(T,P ∗i )

)

= (µ◦i +RTln( Pi
Pi,◦

) +RTln( δi(T,Pi)
δi(T,Pi,◦)

))−RTln( Pi
Pi,◦

) +RTln(
P ∗i
Pi,◦

)

−RTln( δi(T,Pi)
δi(T,P ∗i )

)

= µ◦i +RTln(
P ∗i
Pi,◦

) +RTln(
δi(T,P

∗
i )

δi(T,Pi,◦)
) (AB)

When P ∗i = Pi,◦, we have that P ∗i δi(T, P
∗
i ) = Pi,◦δi(T, Pi,◦), so that,

by (AB), µ∗i (T, P
′) = µ◦i , and;

µi = µ◦i +RTln(γixi) + ε(T, P )

where, as in the previous proof, using the approximation to Raoult’s
law instead, we have that;

ε(T, P ) = µ∗i (T, P )− µ∗i (T, P ′) ' −RTln(γixi(T, P
◦))

so we are free to choose the molar concentration xi(T, P
◦) of the sol-

vent.
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