RATE LAWS AND COLLISION THEORY
TRISTRAM DE PIRO

ABSTRACT.

We begin with the reaction rate formula for electrolysis of water,
given in [5];

g(t) =5 v Q.y2iwan

_ po

where () = e“Fr is the equilibrium coefficient without error terms
and A is a constant, x; = [Hs], xo = [Os], v is a feasible path in the
temperature pressure plane, and n is the sum of molar amounts includ-
ing the solvent H,O.

We have that for the fuel cell reaction 2H, + Oy — 2H50, that;

niy = nig + 1§

ng = nig + 12§

n=mngy+ af

where v; = =2, 1, = -1, a = —1.

so that;

n'l = Vlél

nh = '

n = ozf’

n2
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A7 e(P—P°
= §[—€(RT), 7] Y Quiziz,

as 1 >~ 0
Similarly;
I~ A e(P—P°) ¢ / 2
xQ — E[_ RT2 ﬁ] = QVQxle (* * *)

If we denote the molar activation energy by E, = —e(P — P°), so
that;

E

QT P) = et

Then (* * %) includes the Arrhenius relation in the rate constant,
together with a term A(T, P) which depends on temperature and pres-
sure, and provides a general rate law. We want to recover a version of
this formula using collision theory, based on probability, rather than
thermodynamics. We consider an elementary reaction involving two
substances, which we model as ideal gases, by allowing the motion of
molecules to be random. We use the work in [6] as a basis for the
definitions. We start with a 1-dimensional model, generalising to 3-
dimensions later.

Definition 0.1. Let n € *N \ N, be infinite and odd, and let v = 772—2,
v E* Qs \ Q. We let;

Q,={re*R:0<z<1}

with the nonstandard measure u,, defined by un([%, %)) = %, for
0<i<n—1. Welet L(u,) be the corresponding Loeb measure.

Let Q,,

Neven

={i.0<i<n—1,ieven
"
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with the corresponding counting measure p,, defined by Mn(%) = %,
for 0 <i<mn—1,1i even, nd Loeb measure L(j,).

Qygga =15 :0 < i < — 1,4 odd}

with the corresponding counting measure |, defined by ,un(%) = %,

for0<i<mn—1,1i odd, and Loeb measure L(f,). We let;
T, ={t € *Rso}
with counting measure y, and corresponding Loeb measure L(fi,).
Qe =1{(s)):1<i<kK,s;=10r —1}

so that *Card(Q),) = 2%, with corresponding counting measure i,
1(s) = 5=, and Loeb measure L(p,.), We let;

wi 1 Qe — {1, -1}, for 1 <i < Kk, be defined by;
wi(s) = s;

We let;

Tow={t€T,:0<[vt] <k}

We let x : Qu X T, — ﬁm be defined by;

Xl5,) = 10 S wy(5)) modl0, 1), 1< 1] <

X(s,0) =0

with corresponding °x(s,t) = (%(* Zg.l’:t]l w;(s)) modl0, 1])°

We let Xopen :

Meven

x QX Tp — Q, be defined by;
Xeven(wa S, t) =z+ 2X($, t) mod[O, 1)
with corresponding °X ppe, = (4 2x(s,t) mod[0, 1))°

We let X pqq Q_nodd x Qe X Tpe — Q) be defined by;
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yodd(xa S, t) =T+ 2X(S7 t) mOd[0> 1)

with corresponding X epen, = ( + 2x(s,t) mod|0,1))°

We define the hitting pairing time T : )
by;

X Qe X QX Qe = Ty e

Neven

T(’Ia 51, Y, 82) = #’Ot(OYeven(x7 51, t) = OYodd(y7 52, t))7 (1)

S

We extend the measure i, to ﬁi, by letting pi.(s1,52) = 22%
denote by L(u.) again the corresponding Loeb measure.

We let Xeat 1 :ﬁz X ﬁ — ﬁm be defined by;

Xext,l(sla 327t) = %(* Bl/:t]l wj(sl))7 1 S [l/t] S ot

Xewt1(51,52,0) =0

We let Xeat,2 3§i X Tow — Qp, be defined by;
Xestz(s1,52,1) = £ oW wj(50)), 1< o] <
Xeat,2(51,52,0) =0

with corresponding °Xeztq and °Xest 2.

Lemma 0.2. For {ti,ts} C *T,,, the random variables Xezt1t, and
Xeat2t, 0T€ *-independent, and the random variables °X ezt 1.4, and °Xept 2.1,
are independent. The processes °Xezt,1,t And °Xezt 24 are rescaled Brow-
nian motion by a factor of \/Li The process By = °Xext.14 — " Xewt2t 1S
Brownian motion.

Proof. Choose A\, Ay C *R, then;

1 The set “Xepen (@, 51,1) = °Xoua(¥s s2,t) is L(p,) measurable in 7T, ., as the
intersection of internal sets (), rr [Xeven (2 $1,t) — Xoaa (¥, s2,t)| < 2. Each set in
the intersection has an infimum ¢,,, and we obtain an increasing bounded sequence
{tn : n € N'}. The set {°t,, : n € N'} is increasing and bounded, so has a limit,
which we denote by pu°t.
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fs({(51, 82) © Xeat, 1,61 (51, 52) < A1y Xeat 2,1 (51, 52) < Ao})
= 1 ({(51552)  Xeat. 1.1 (51) < A1y Xeat 1.5 (52) < A2})
= MH({Sl : Xext,l,tl(sl) < Al})ﬂn({@ : Xe:vt,l,tl(S?) < >\2})
= e ({(51,52) * Xeat, 1,1 (51, 52) < M) ia({(5152) © Xeat,1.41(52) < Aa})

For the second claim, choose A1, Ay C R, then;

L) ({051, 82) © “Xewt1.45 (51, 52) < A1, "Xewron, (51552) < Aa})

= L) ({ (51, 52) + “Xewr 1., (51) < AXear1, (52) < A2})

= L) ({51 0 “Xewr,10 (51) < MP)Ltn) ({52 2 “Xear 1,0, (52) < A2})

= L) ({(51,52) * “Xeat,1,0, (51, 52) < At} L) ({(5152) 1 “Xegr1,0, (52) <

A2})

The next claim follows from the steps in Chapter 8 of [7], or using

[1], noting that the additional factor is not required in the calculation,
and using the fact that v = ’72—2 It follows that, for t; < t5, the in-
crements “Xepi 14, — Newt. 1ty A0 *Xezt 2.4, — “Xewt o, L0llow the normal
distribution N (0, 25%), with variance 2%, Tt also follows that, for
t <ty <tz < ty, the increments;

[¢] [} [¢] [0} 7
Newtats = Xextats A “Xepr14, = “Xeat145 are independent

o o o o .
Xext,Z,tz - Xea:t,2,t1 and Xext,2,t4 - Xemt,Q,tg, are 1ndependent, (A)

For the last claim, follow the steps in Theorem 8.8 of [7]. (7) is clear.
For (ii), we have, by the above, that the increments X ;1 , — “Xewt.1.41
and Xyt 01, — “Xewt 24, are independent. In particular the difference of
the increments (OXe:vt,l,tg - OXe;tt,l,h) - (oXext,Q,tg - OXezt,Q,h) follows the
normal distribution N(0,¢ — 1), with variance ¢, — t;, and so do the
increments By, — By, . For (iii), we can combine (A) with the argument
in the second claim. Letting;

_o© ) __ o __ o
A= Xext,l,tg Xea:t,l,tl’ B = XEZ't727t2 Xea:t,?,tl
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C= oXezt,l,t4 - OXe:rt,l,tg? D = OXext,2,t4 - OXemt,Q,tg
we have that;
P(A-—B<z,C—D<y)
= fZl fZQ P(B=2z,D =20, A<z+2,C <y+ z)dzdz
= le sz P(B=2z,D =2)P(A<az+2,C <y+ 2)dzdz
= le sz P(B = 2)P(D = z)P(A <z + 21)P(C <y + 29)dz1dzy
= [, P(B=2)P(A<z+2)dz [, P(D=2)P(C <y+z)dz
= f21 P(B=2,A<z+2)dz f22 P(D = 25,C <y + 29)dzy
=P(A-B<x)P(C—-D<y),(®
so that the increments A — B and C' — D are independent.
O

Definition 0.3. For Brownian motion {B; : t € R>o}, we let T be a
stopping time with two barriers 0 < x <1 and v — 1 < 0, so that;

T=min{t: B,=x orB,=x — 1}

We let 7 be the stopping time for the barrier x;
7 =min{t : B, = x}

Ty the stopping time for the barrier 1 — x;

T =min{t: B, =1—z}

T3 the stopping time for the barrier —1;

3 = min{t : B, = —1}

2For a cumulative density function F(z,y) = P(X < z,Y < g), by P(X =
z,Y <y), we mean %—i(m,y)
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T4 the stopping time for the barrier 1;

74 = min{t : B, = 1}

Lemma 0.4. We have that the probability distribution of T is given by;

z z? -z 1—x)? 0o _
f-(t) = [—Wexp(—a)—\}mexp(—( 2t) N2, \/QW(lv,t)a exp(2(vit))dv

...Use to calculate expected hitting time on probability space ﬁi X ﬁi
and mean free path from velocity distributions, applications to fusion.

Proof. The distributions of 71, 79, 73 and 74 are well known, see [9];

2

fr(t) = \/;?exp(—%)

Fro(t) = =Zeap(— U520

Fralt) = frult) = —eap(—L)

We have that, for t; < t9;

P(r =t1, 70 =t9) = P(ray = to|7y = t1)P(11 = t1)

= P(7'3 = tQ —tl)P(Tl = tl)

1

_ _ =z x? -1
28 exp(—ﬁ) V27 (ta—t1)3 exp(Q(Q_tl))

and for t; > to;

P(T1 :tl,TQ :tz) :P<7'1 :t1|7'2 :tz)P(Tg :tz)

= P(T4 = tl — tQ)P(TQ = tg)

(1—=z)? 1

_ 11—z 1 _
N exp(— 2t2 )\/27r(t17t2)3 6xp(2(t1—tz))

as the increments B;, and B, ;, are independent.
It follows that;

P(r>1t)=P(m > 1,7 > 1)
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)dvdu

_fu tfv u\/ﬁ erp(—3 )\/27”} u)gexp(

—x 1-x
+fv:t fuoiv \}Wexp(_( QU) >\/27r(1u_v)3633p( (u— U))dUdU

and, using the FTC;

fT<t> - _%P<T > t)

) T 2
=~ L2 et~ %) i etp (aamp )Y

00 — 2 _
— Jus \}mexp(—( 2t) )\/27r exp(Q(uit))du

= ——Zeap(—%) [7, TP aamg )

1-z (1-x)2 ) 1 -1
TV xp( 2t >f'u:t \/27r(v—t)3e$p(2(v7t))dv

z2 — 1—x)? 0 —
== \/271'1‘, sezp(—3 ) N \/12:;3 emp(—( 2t) )] fy:t \/271'(11)715)3 exp(2(yit))dv

0

Lemma 0.5. Let v > 0 be infinite, {a,b} C Rwg, B: Qu X Ty = *R
be nonstandard Brownian motion;

with stopping times;

n = min,er, (B = "7}
T = min,er, {Bi = _[\%ﬂ}

then, if {ti,ta} C Tyw, with 0 < t; < to;

p(T1 =11, 70 = t2) = pue(11 = t1) (3 = 2 — t1)

Proof. We have that;

(m=t,m=1t)={w: By, (w) = [a\/\/zﬂ7Bt(w) n {@7_[11/\/?} -
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0,0 <t<ty,Bi(w) # -2t <t <ty,By,(w) =L} (x)
Vv 2 Vv

Let pri : Q. — Qp,q be the projection onto the first [t;v] co-
ordinates, and define X;, C Qu, by pri((mn = t1)). Clearly, we
have that pp,,(Xy,) = pe(n = t1). Let pro @ Q. — Quuu)—y]
be the projection onto the first [tav] — [t1v] coordinates , and define
Xiite C© Quov—ftn] by pra((13 = to — t1)). Clearly, we have that
Pitar] 0] ( Xty o) = pe(T3 = to — t1). Let prs @ Q. — Qpu,u—[n) be
the projection onto coordinates [t1v] 4 1 to [tav], then we have that, by

(*);
we (r =t1, 7 =1t) iff pri(w) € Xy, and prs(w) € Xy, 1,

Let pry : Q, — ﬁ[tw} be the projection onto the first [tov] coordi-
nates, and let X;, = pry(m = t1, 72 = to), then;

fs(T1 = t1, T2 = to) = pipa0)(Xey)

_ *Card(Xt,)
9ltav]

_ *Card(Xiy)*Card(Xiy t,)
- olt1v]gltav]—[t1v]

= Htqv] (th):u[tw]—[tw] (th,t2)

= (T = t1) (13 = t2 — t1)
]

Definition 0.6. Let f : R* — R, in the variables (t,z) be analytic,
such that, on a bounded region V. C R2?, all the partial derivatives

g;;t’; < Eviljl, for some Ey € R, with transfer f* : *R?> — *R,

let B : Q. x 7_:,7,{ — *R be nonstandard Brownian motion, and let
9: Q% X Tow — *R be defined by;

g(tw) = (1, By ()

We define;
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Wltr]+1
dBM (w) = ﬁ

We define the nonstandard derivatives;

®

e = Fr e g, 0 = V(5 Bua (@) = (5 B (@)))
Ly

5% W o) = V(8] Brots () = f*(%,

B, 1t , — BB,

of _ (9f _ Of*
(8_&)*‘@@ o (8_Bt)*|M,B[tu] (w) — o= |(w,@)

(1]
v

92 92 F *
(a_BJt;) |@,w (332) |[tV] B[t]( )— 922 M@

We define the filtration {fz 0 <i < K} on Q, by letting ]-"z be

generated as a x-0 algebra by the basic sets;

Uz, = {0 € Qs (@(H)hgjzi = kil
where k; is a sequence of 1’s and —1’s of length i.

We say that a process M : Q,. X 7_',,,5 — *R is adapted to the fil-
trartion if My is x-measurable with respect to Fw). We define internal

integrals by;

Fort; < to;

t [toV] 1+ [tav] i
S M(tw)dt =[5 M(tw)dt = 5752 7, M (5, w)
Fort; < to;

[tav]

f M(t,w)dB; = f[tl,,] (t,w)dB; = f Zi:”[tly]M(f,w)wiH

v

If M, is adapted to the filtration, we define;
E(M|Fs) = E(Mun | Fisn)

to be the orthogonal projection of M, onto the x-subspace of *-
measurable random variables with respect to Fsv, see [8] for more de-
tails, so that; ’
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E(M;|Fo) = E(M;) = [ My(w)dpie(w)
We define My to be a nonstandard martingale if E(M|Fs) = M;

We define My to be a quasi-nonstandard martingale, on [0, A] if for
0< [ <l < P

E(M|F) = My and |E(M;|Fy) — M| < -

for some C € R.

Lemma 0.7. We have that;

2
g () = ()], 1+ 5 ()] 1o )t )7, 1) By +Co ()

v T v

where [Cpw (w)] < —5= and Cuy € Rso if @ and Bw (w) are
finite.

There exist {\1, \a} C *N infinite, and Vi, », C ., such that for
0< @ < [t < [’\LVV], with t1 and ty finite, w € V), x,, we have that;

v
[tov]—1 [tov]—1

v v v * 2 * T *
g(@,w)—g([tl—y],w EIM ((%) \wm%(%) ’w,L;])dHfm ((c’)%) | 221 )dB e

T v v

[tov]—1 [tov]—1

v v * 2 * v *
|g(77w)—g([t;],w)—(fm ((%) |w@+%(3—3§) |w7lt7vl)dt+fM ((a%) |w

1
v

1w )dBuw )|

)

with MN(V)\L)\Q) ~ 1 and Mn(ﬁn \ VA17A2) < %1,'

For g; constant on Q. \ Vi, x,, fort finite, if((%)*
0, for 0 < 84 < < 24 < \) then;

2
w,t+%<%)*’w,t) =

|E(guan = giun [ Fep)| < 5
~0

and g; s a quasi-nonstandard martingale on [0,T], for T finite.
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Proof. We have that;

As f is analytic, for {¢t,x} C R, {h1, ha} C R, with maz(|hy], |ha]) <
1 we have that;

[\

2
f(t+hlax+h2):f(tax)+hl%|tx+h23f|t1‘ hggmfh:c

§itif ki R df hJ
t,x Zu + Ej>3 Oz ’tm

hihy
+ Z(i,j):igl,jZl otiox ‘ta: il + Zz>2 6t1

so that;

2 92
h2gf|tm - %%h,x‘

|f(t+h17x+h2) - f(t,l‘) - hl%
< Mt,x|h1||h2| Z(i,j):z‘ZLjZl |h1|171|h2|j71+Mt,x|h1|2 Zizz |h1|i72+Mt7fc|h2|3 21‘23 |hllii3

. . M. h 2 M h 3
= Mt,x|h1’|h2| Z(i,j ):2>0,5>0 ’hlmhﬂj + ff\‘hf“ + 1t’_z||h22||

< Mtx’hIHh2| Z’L>O 1|h|1h2‘ + 2Mt,x|h1|2 + ZMt,x’h2|3

My, z|h R 2 3
< i T 2Mueln "+ 20 |ho|
< AM, o ha|ho| + 2M; o7 [ + 2M, 4| ho|?

By transfer, we obtain that, for {t,z} C *R, D € *R, |(t,z)| < D,
{hl,hg} C *R>0, with maaj(\h1|, ’hg‘) < i

2
5t + s+ he) = f2(t ) = b (G L = Pa(BE) e — F (55 il
< AM, [P || ho + 2My 4B [2 + 2My 4 [Rs]?

with M, , < Mp, and Mp € R if (¢,z) is finite, so that, with;
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w[tyy+1 9 * ” 82 « ”
—— (%) |([t—y]aB[t;J (@) = 5 (52) |([ty]7B[t;1 (W)l

+3(5) 1L B @))]dt — (30" 15), Bio () dBws ()
< 4M[tu] Bl |h1Hh2| + 2M[tu] Bl |h1‘ + 2M[w] B |h2|3
zJEM@JBMM QM@’BM(W) 2Mt7”]aBM<W>
S = v + l/2 v _|_ = v
v2 v2
GM@vB [tv] (@)
< v
v2
with M Bl ) finite, if (@, Biw) (w)) is finite.

For the second claim, we can use the result in [1], see also [7], that
a.e (V) L(py), for @ finite, 0 < ¢ < [tz—uy], the map (M w) B[i( ),
(1) is near standard and finite. We can approximate V' by V,,, n eN )
such that Vj, is j, measurable, V,, C V41 C V, and p1,(Q \ V) < 1,
then, as the map (f) is internal, |@, B (w)| < M, with M,, € R+.
By assumption, we can then assume thuat, for (i,5) € 229, w € Vh,

0<t< [tf/"], with ¢, finite it < Ryiljl, for |(t,z)| < M,, with

g 8t’8 Y
R, € R~o. Then, using the previous result, for w € V,,, 0 < @ < m—;'];
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* v Of \x 0 * Of \x
=3 () s + 3(550) |2 )t + ((5) |2 )dB: + Cs (w)]
[tov]—1
* > Of \x 0 * Of \x
Y i (G e + 5(55) s )t + ((5) "L 2 )dB:]
_1x [tQL:,]il Of \x* 1/ 0°f \x ) 1 % [t2ﬂ71 Of \x )
-7 Z [t1v] ((_t) |w,7 + 5(332) |w,%> + \ﬁ Z [t1v] ((aBt) |w,%)w7‘t1
[tov]—1 [tov]—1
— 9% f \* T (( Of \x
= [u () |1 55 ’t;) |w7@)dt+f[t1u] (F&) |, 11 )dB )

as for t; < to finite;

" Z _n O W)l

< [tQV]maxogig[tQV}—ﬂCg (w)]

l
v

Ry [t2 l/]
3

v2

IN

IN
| N
wld| o

14

=V

ST

~ 0

where R, is the uniform bound in M, , given above. Fixing @ fi-

nite, letting n vary with 1, (€, \ V ) < %, Q. \ V. 1tpn decreasing,
we have that; ’ ’
[tov]—1
€ 002 )18, ) ([ (%), SR e

) )
v v v

[tav]—1

+ Jud (ZE)|,1)dBu)| < v73, for w €V i, 0 < 12 <

M}

contains N, so by overflow, Contains A1 € *N infinite, and we find
1% le20] with g1, (Qs \V [zQV]) < 5, such that, for w € Vi, tae];

A1,
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[tav]—1

+ fud ()7l 1) dBin )| < w73 (X)

v

for 0 < t;”] < ti”] We then have that, for m € N, the statement
(X) holds for Vi, ., so that by overflow again, we can find Ay € *N,
such that (X) holds for Vy, 5,. In particular, ,.(Qx \ Vo) < /\il ~0

For the final claim, if (( DVl + 2 (832) o) = 0, for 24 < ¢ <

@ < @, then, by the second claim, for w € V)\l,pzu];

v

[tov]—1 [tov]—1

[t2v] [t1v] of > f of

g(B w)—g(H w) ~ [ (57, MWL%(W)*L,@MHL[@ ((35;)" L.,

’ t
) v

[tov]—1

= [ (GG)" |, 22)dBe (D)

whereas, if @ <t< @, with t1,%, finite, as ¢; is constant, for

w € L\ Vi

g( v 7(")) - g([tl_,,y]7w) =0 (C)
It follows, using the method of [8], Lemma 0.13, and (C), (D) ;

E(QM _QMU:M)

[tov]—1

~E(fu (5571, 101)dBw [F1un)

)
v v

=0

-

with |E(g; Jlezv) = Gl |.7:[z1u])\ < i{ < —r

v12

and, for 0 < s < t finite;

E(gi|Fs) = E(gt — gs + gs|Fs)

~ E(gs|Fs)

:gs

with |E(g:| ) — g5 < =

14

so that g; is a quasi-nonstandard martingale on [0, T], for T finite.

(] )dB )
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Lemma 0.8. Let B; be nonstandard Brownian motion, then if v =
ky/v, where 0 < k < [tv];

Pr(B) > &) < 2eap(7)

In particularly, Pr(|B| > x) < 2*6961?(—‘5—?)

Proof. For n finite, with X,,; = Z[t w;, we have that, for 0 < k <
[tn];

Pr(X,. > 2) = Pr(X}, > k)

= PT(XIQ+ > %)

Pr(X,: < 22) = Pr(X}, < —k)

_ Pr(x’;l < —k2+1)

where X’ = Z[t | w; and % follows the Binomial distribution with
probability 1 and [tn] trials. We have tht E(25) = 1. so, by Hoeffd-
ing’s inequality;

k2

so that Pr(|X,| > %) = Pr(X),, > k) + Pr(X},, < —k) < 2e77

The result is uniform in n € R+, so transfers to the case where
v E R>0, and gives the first result. Then substituting, we have that

*exp(— ’[‘CV}) *exp(— 2[ty]) < *fexp(—% ) which gives the second result.

U

a2t
Lemma 0.9. Let f\(x,t) = e** "2, where o = \/2i\, for the principal
root, A € R, then;

|fa(z,t)| < emlz‘, for the positive square Toot.

and, similarly, for A # 0;
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‘3+fo

17

Lorarmeal < max(1, SN\ VNN “ymiformly in (i, ) € 22,

ilj!

for A =10;

‘B +Jfk |
% < 1, uniformly in (i,7) € Z2,

Proof. For the first claim, we have that;
[fa(, )] = [ev2Re=iM]
= eV
‘efx(cos( )+isin(T)) , (A>0)
= e/
— o
< el
[fa(, )] = [eV=PteosCEIFisinCGEN | (X < 0)
_ ‘e\/fz,\xcos(%)‘
= e~ Va2
— Je/

S 6\/ —)\|.’E|

For the second claim, using the first part;

[y Ny ISV NER]
i!510x;0t; alj!

< |a|itieVIAIz]

— ilj!

i+J
< A /e
— ilg!

2, so that;
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6\/\7 o]

| Q' fy

i110z,0t; | < max(l, max1<w<6|A|

< maz(1, |2) 25 e Vil
< max(1, |2)\|6‘>‘|)e\/m|x‘
= maz (L, SN2 )V Mlzl () £ o)

|-22h | <1, (A =0)

iljlox;0t; | —

O

Lemma 0.10. For A € Ry fized, we can obtain infinite xo and to,
such that for |x| < xg, 0 <t < ty;

SN cap(y /W],

v

7).

Lol

22

(i1). *exp(—52) =0

Proof. Let to = log*(v), zo = LY then, for |z| < zo;

v
[ep(y/Ile)] < [*exp(y/Txo)

so that;

rerp(y/WiaDl] w3
V3 B 5

v2

5 *(v)v
< V3[l093( )v]

= .3

V3 (log* (v)v+1)
V3

log* (v) +

v

[
A
o=

12

0
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and, as eSMNm(2X) ig finite, we have that;

SN IAD eap(y /1N |z])[tv] 0
. ~

v2

which gives (7). For (ii), we have that;

* 2
9 log™ (v)

*exp(—;T%) = *exp(— Zlogg‘il(l,))

* log* (v
= "exp(— 198\;|))

1

= p 18]x
~ 0
]

Definition 0.11. For A € R, we define stopped nonstandard Brow-
nian motion By : Q. X T, — R by:

E(W) = Bt(w), if ma:pogtlgt|Bt,(w)| < l?c:g*‘(:i

?7)\( ) log*(v) ’[,f maxﬂﬁt/ﬁt‘Bt/<w)‘ > log*(v)

vk INGY

and for ming<y<¢| By (w)| > 109 W B, (W) > loy log*(v)

AL Al
Bt,)\(w) = log |>\\ 2fmax0<t/<t|Bt,( )| > log ‘(M)
and for minyzy<i|Bolw) > S8, By(w) < 4442

Lemma 0.12. For 0 <t < *log(v), we have that;

ps(mazo<y<i| By (w)| > logtl)) !

Proof. We have, using Lemma 0.8 and the reflection principle for ran-
dom walks, see [9], that;

“log(v)
o (Mazo<y <¢| By (w)] > \/W)

*log(v) . _ Tlog(v)
S Mn(mal'ogtlgtBt/<W) > 3\/|T|> + uﬁ(mznogt/StBt/(w) < 3\/\T|)



20 TRISTRAM DE PIRO

< 2 (By(w) > 29Uy 4 9y (B (w) < ——Lealn))

3/l 3/ IAl

_ “log(v)
= 2p1e(|Buw)] > 202)

< 2pun(| By(w)| > FU)
([*log(u)ﬁ])Q

< dreap(——20e )

(Zlog() =1y

< 4*exp(—— — '21'” )

(*log(ﬂ)—2)2

— treap(— L)

( *log(v)—2 )2

< Arerp(——2 )

2*log(v)

T *log(v)2—4*log(v)+4
= 4"eap(— R[N [*log (1) )
N *log(u)+4—%
= 4*exp(— ER Loslw)

< 8UTIT*eap(5(y)

O

Lemma 0.13. If X, : Q. — *R is a F,-measurable random variable,
with X; >~ 0, then, for 0 < s <t, E(X;|Fs) ~0 as well.

Proof. For n € N, we have that | X;| < £, so that by Jensen’s inequal-
ity and monotonicity, we have;

< E(;|F)
= EF)

3=

As n € N was arbitrary, we obtain that E(X;|Fs) ~ 0.
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Definition 0.14. For a € C, we define M,; = *exp(aB — 0‘22[;”}).
For o = /2i), we define the stopped process M o by:

Ma,t(w) = Ma,t(w); Zf maxogt/§t|Bt/( )‘ < %

Mo w) = *eap(asZd — S if mazocy<i| B (w)| > 2

and for ming<y<;| By (w)| > 1309*&‘)7 By (w) > log |(:‘)

Moa(w) = "eap(—at2500 — €0 if mazocy<i| Bo(w)| > 5244

and for ming<y<;| By (w)| > log log™(v)

_ log*(v)
e Brlw) <=5

Al

Lemma 0.15. For a € C, a = V2i\, M, is a quasi-nonstandard
martingale.

Proof. Let U, C Q,, be defined by;

. log* (v
U = {w : mazo<p<; By < 5 ( )}

V C Q. x T, be defined by;

V=A{(t,w):0<t<*og(v),we U}
Ve={(t,w):0<t<*log(v),w¢ U}

For w € Q,, let

?

o = 0050t (1B )] > 242) — 3
be the partial function, so that w € Uy, but w ¢ U, 1. Let V* C V
be defined by;

V* = {(t,,w) : w € Qp, t, defined}

Then, for (f,w) € V¢, we have that dMa,|w = 0. For (t,w) €

VA\V* ., by the definition of V and V* the process Mmt agrees
with M, at (f,w) and (¢ + L, w). We have that, letting f(t,z) =

explax — 22L);
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(5 l(teo) + 5(55) 0y = 0
so, following the proof of Lemma 0.7 and using Lemma 0.9;
AM o), 11 =AMy, 101
= ((%—{)*m,w + %(ﬁ)*@w}dt + ((Z5) |1, ) ABres + Crea ()

v

= ((55,) 121, )ABw) + Clon ()

0
v
where;
BIAIn(12X]) h
Cua ()] < R ) < et
v v

For (t,w) € V*, we have that, using Lemma 0.9 again;

|dMO¢t‘ [tv] ’ - ‘Mat’[tuH»l w _Ma,t‘ﬂ,w’

* log™ (v a?[tv]+1 % log* (v c a?[ty
— rerpa - S1) cmpalonty _ o _ sy
* log™ (V) \ % v *
= [reap(a 252 cap(— )| eap(55) — *eap(~5)]

= ["eap(v AN eap(~ 2 [ eap(~2) — *exp(— )|

= [ el‘p(\/flof/—)l\l 710Gz 1+ 5 - 0()

* log* (v
< eap(y/INETE)

with B (w) > M, 0<ec<1, GeERy

3/IAl
and;
|dMa,t‘Myw’ = ‘Ma,tym,w - Ma,t‘ﬂ,w’

log* (v) a?tv]+1

:|*exp(—a3 N )—*exp(—oz3 N T 5
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log* (v)

= [reap(—a’ 75 ) exp(=
= [rexp(=V2AT) eop(— )| ["eap(=3) — ean(

) |eap(—2) — *exp(<%)|

R

= [rexp(— \/T“’f/—)Hl +0(3%) —1- 5% - 0()l

<* exp(\/IA[“A |)%

1
Gv3

~0 (A

with Bjujs (W) < =22 |<M> 0<c<1,G e R

It follows, using the proof of Lemma 0.7 again, that, for 0 < ¢ <*
log(v);

_ — 1

My — Mg = [ Y ((525:)7 1 ) dBi + e(w, ) + 6(w, ) (C)

where, using Lemma 0.10 (¢), (A), and the fact that t <* log(v);

6\)\|ln(\2>\\)*exp /“)\ log ("))[t

le(w, t)] <

We have that t, = 7 — %, where 7 is the stopping time for the barrier
log”W) 5o that;

3/

|f(t/\tw—* Tf)*‘% dBtV] fot/\T 6Bt Mw)dBﬂ’
s|f0“““‘%<<§—§t>*@,w>d3m—fo“““« )l Bl
) s B — [ (24 et ) B |

e |<Tf) |[(t/\tw)u] dB[(t/\tw)u]| + |(%) |@7dem|
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= |(z£)] erto] |, OB erton) |

IN

() larm |

ol

v

IA
Q
B

~

)

(B)

By proofs in [8], we have that fg ﬁ )*| .1 )d B is a nonstandard

martingale, and by Lemma 0.16, fOMT aaét)*lw itv] JdBpw is a nonstan-

dard martingale as well. It follows from (B) and Lemma 0.13, that;
tAL,)— = "
By () 1) ABrwt | )
0

~ By (%) 1 ,dBua| F.)

= [ (2L B

0Bt LW
_1
~ fo(s/\tw) V(%)*|M,deM

and from (C') and Lemma 0.13 again, that;
E(Mq; — Mool Fs) = My, — Mgy
As Ma,o = 1, we obtain that;

E(Mog|Fy) = Mo

as well. By the proof, using the explicit inequality in Lemma 0.13,
we have that;

|E(Ma,t - Ha,Ol‘Fs) - (Ma,s - MO&,ON

6| A |In(]2A]) * log (u) *
2GV3 2041/?15 2¢ exp(4/ \)\ )[*log(v)v]
<2 ey

< 2Gr7% + 20075 + 266"\”"(‘2’\‘)—Vg*log(y)y

v2

< 2GV76 + 20076 + 266"\””(‘2’\‘)—*12’/9%(”)
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G

A

<

\H|

N

vi

where H) € R~y depends on A. Clearly, we then obtain that;

|E(Ma,t|fs) _Ha,s| S H_1>\

viz

as well, so that Ma,t is a quasi nonstandard martingale, for 0 <t <
*log(v).

O

Lemma 0.16. If M, is a nonstandard martingale, and T is a stopping
time for the barrier [a\/\/;ﬂ, with a € *R, 7 = min{t : B, = [a\/\@,t €
Tox}, then the process Min, is a nonstandard martingale. In particular

the process My nr 15 a nonstandard martingale. The process M, iz,

or a = V2i\, A € R~g, T is a stopping time for the barrier M, with
N

a € R~o, is a quasi-nonstandard martingale. The process Ma,t/\ﬂ for
a = V2 XN € Ry, T 15 a stopping time for the barrier 7[\%@, with
a € R-o, is a quasi-nonstandard martingale.

Proof. For the first claim, the proof for the discrete case can be found in
[9]. It is sufficient to show that the event (7 < 2) € Fi. This follows as;

(r < 3) iff Ag, X251 (@1); = lav/7]

where w; is a sequence of 0’s nd 1’s of length 7. The disjunction is a
*-finite union of the basic sets Uy, so belongs to the x-o algebra F.
The last claim is a consequence of this lemma and lemma 0.15.

For the second claim..... O

Lemma 0.17. We have that, for A € R+, a € Rso;

<

E(Mar) = 1, Bleap*(—Ar)) == exp(— Y22t

N

Proof. As Mmt,\f is a quasi nonstandard martingale, we have that;

E(Mainr) = E(Maonr) = E(Ma,o) =1 (%)

=

Let k1 = 13 < 13 < Kk, so that £ = < ~ 0, and () goes through ~.
v 6

14

[V
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By Lemma 0.18, we have that;

P(T 2 %) S Alay/v]

1

<|3
=

_ Ala/V]
V/ [K1]

~(
We have that;

MQ,T’(T>ﬂ)c - Ma Ll/\T|(T>ﬂ)c
= v v = v

so that as M, 4, is bounded by *exp(«a [“\/‘/yﬂ ), we have that E(M,, ;) ~
1, with;

|B(Ma,r) — 1] < %ﬂ*exp(aw>

[V%] Vv
O
Lemma 0.18. We have that, for k > max(2,3a, a?);
P(T, > r) <
where C, = 8‘%/6, for a random walk, starting at 0, with steps 1 and

—1, and barrier a > 0, stopping time T,;

For nonstandard Brownian motion By, with barrier [a\%ﬂ, a € R,
and stopping time T, we have that there exists A € R, with;

P(r >y < gl
(T—V)— \/W

for [tv] > max(2,3[av/V], [a/V]?). In particular, fort > a*+1, when
t € R, we have that;

P(r > 12y < 2240

Proof. We have that, see [3];
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P(T,=n)= gc@%ﬂ
forn >a >0, n— a even.
It follows that, using Stirling’s approximation, for x > max(2, 3a, a?);

P(T, > k) =30 iCham

n=K,n—a even n

=3 a__n 1
- n=~kK,n—a even n n;a!nT-ﬁ-a! on

1

DyneT2
a 2mn (%) eT2n 1
— Zn:mn—a even n 1 1 on

/27r(n \/Wn+a) 1205441 12("T+a)+1

o] 4a 27"”(*) 1
< Zn:n,n—a even n

n+a n+a
2m (15

< Zoo 4a \/§ (%) 1
— n=k,n—a even n \/Tr\/ﬁ(n,a n_a n+a)1§£ Qn

)

< Zoo 4aV3 ()" 1 1
= —kn— o i —

n=k,n—a even \/En n(nZea)Q(n;éa)Q (n;ea)?g(n;;a)% on
_ ZOO 4a\/3 (2" (“—G)%L
- = — o\ [0

n=~,n—a even \/wtn./n (n2ca) 5 (n;:ea) 7 \nta on

o javd ("
S Zn:n,n—a even /mn./n (n—a)%(n+a)% on

2e 2e

_Zoo 4aV/3 ( 4n? )%i
- n=k,n—a even /mn,/n \n?—a? on

v 108 (2t 13
- n=k,n—a even \/mn\/n \n2—a?

= Zzo:n,n—a even \/457;/377(1 + ngafaQ)%
< Z?Ozo:mn—a even %ﬁ(]‘ + %)%

=zawwmﬁ@m+%Wﬁ

00 4av/3 9
S Zn:mn—a even \/gnf

ZOO 4ae\/§
n=k,n—a even /mn\/n

< 406\[ fn 1 a:f

_ 4ae\[
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— 4ae\/§ 2
VT (k1)
< daeV/3 2v/2
= " /r m%
<%
K2

where C, = %‘g
For the next claim, just observe that the above proof is uniform in
a random walk with a barrier at [a/n] for n € N, so by transfer, we
can obtain the result for infinite v € *, rescaling the walk by a factor
of \} and moving the barrier to [aﬁ, the constant A being Sf‘ff The
last claim is just a simple exercise in nonstandard arithmetic, noting
that for ¢ > a®+1, the max condition is automatically satisfied for [tv].
]
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