SOME ARGUMENTS FOR THE WAVE EQUATION IN
QUANTUM THEORY 6: WAVES, CURRENT AND
CHARGE

TRISTRAM DE PIRO

ABSTRACT. We develop the theory of current and charge (p,.J),

with compact support, satisfying the wave equations, the continu-
10J _§
=5 =0.

ity equation and the connecting relation 7(p) + = %;

Definition 0.1. We say that a scalar process p € C*(R*) has compact
support, if, fort € R, p; has compact support and the support varies
continuously with t. We say that a field J € C*(R*) if the components
ji € C*(RY), for 1 < i < 3 and has compact support, if the compo-
nents have compact support.

Lemma 0.2. If p € C®(R*") satisfies the wave equation, [*(p) = 0,
with the property that p has compact support, then p has the represen-
tation;

Fort >0;

p(@,1) = i Jspwent9@) + po(@) + Dpo(H) « (7 — 7))dS(7)

and, fort < 0;

P(E.t) = 2 Jsn—e t9@) + po @) + Dpo(¥) - (T —7))dS () (VV)

where g(T) = (g—f)tzo has compact support.

Conversely, given po(Z) and g(T) with compact support, {po, g} C
C>=(R?), the formula (‘;V) efines a process p € C®(R*) satisfying

the wave equation (1*(p) = with the property that p has compact
support.
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Proof. For the first claim, observe that the process p(7,t), t > 0 satis-
fies the wave equation [(1*(p) = 0, ¢ > 0, with, by continuity;

limy—04pt = po

and;

o5}

limt—>0+% =g(T) = (_/t))t:O

where py and ¢(Z) have compact support and {pg, g} C C*(R?).
The representation for ¢ > 0 then comes from Kirchoft’s formula, see

[1]. The process p1(Z,t) = p(T, —t), for t > 0, also satisfies the wave
equation [I?(p;) = 0, ¢ > 0, with, by continuity;

limy o4 (p1)e = limy—0—pr = po

and;

Q

limt—>o+(%)t = limy_o— — (%)t = —9(T) = —(%)i=0

The representation for ¢ < 0 then comes from Kirchoff’s formula
again, noting that we have reversed the sign of ¢(Z), when ¢ < 0.

For the converse claim, suppose the initial conditions py € S (Rg),% =0 C

C>(R?), have compact support, with p defined on R* by Kirchoff’s for-
mula;

For t > 0;

P@1) = grm Jspe.ent9F) + po(@) + Dpo(H) « (7 — 7))dS(7)

and, for t < 0;

P@1) = e Jsp—ay(t9(@) + po(@) + Dpo(y) « (7 — 7))dS ()

then, see [1] again, we have that, for 7 € R?;

limeo4p(T,t) = p(T,0)

limy o4+ 92(Z, ) = g(T)
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limi—o4p(T,—t) = p(T,0)

limHoJr%?(f, —t) = —g(7)

where ¢(T) = %\tzo, so that;

limio-p(T,t) = p(z,0)

limy_yo- (T, 1) = limy_op — 2(T, —t)

=——g(7)

=9(7)

In particular;

limeop(T,t) = p(7,0)

limtﬁo%(f, t) = g(7)

Moreover, for fixed ty € R, tg # 0, as py and g have compact sup-
port, we can see that dB(T, c|to|) N Supp(po, g, Dpo) = 0, for |To| >
Cy,, where Cy, € R+, so that py, has compact support as well. As
{po,g} C C=(R?3), we can show, by differentiating Kirchoff’s formula,

that, for ty # 0, p,, € C*(R?). We then have that p;, € S(R?) and
we can then apply Lemma 0.5 to show that, for t > 0;

zkct —iket\ ik T,
p(Z, Zﬂé — 7 Jrs (B + d(k)e~*e)ebT dk;
p(f _ ng eiket +d (k’) —zkct)eiE.Ed_ (X)
where;
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d=(k) = 5(F(po) (k) — 7 F (=9) (k)
= 5(F(po) (k) + 7. F (9) (k)
see also earlier in the paper, so that, for t < 0;

fzk:ct — (T piket ,ikT
) = g [0 (B + (B ) (1)

Differentiating under the integral sign in (X'), we have that, for ¢t > 0;

%&(—, t) = fw ((iky ) (iko ) (iks)*b(R )™ e (iky )i ik ) (iks) R d(E ) e~ )T dk

where (k) (zk:2) (zk;g)kb(E) € L'(R?) and (ik1)(iks)’ (iks)*d(k) €
LY(R?), so that;

. 9ititky
llmt_>0+8x18yﬂaz( )

= lzmt_>0+ ng Zkl (Zk‘z) (Zk’g)kb(E)GZkCt—l—(Zk’l)z(lk’g) (Zk’g)kd(

|
\_/
®
o
X
g
N—
Q]
%
-
8
Q.
S

= fRd zk1 Vi(iks ) (iks)*b (k) + (iky) ! (ika ) (iks)Fd(k)) e dk

(2r )*

= o7 Jro (k) (i) (i) F (p o) (k)e™=dk
7«+J+k

= gragaz (T 0) (X)'

Similarly, differentiating under the integral sign in (Y), using the
fact that b~ (k) + d~ (k) = F(po)(k);

. gititk gititk
lth%07W<x t) m&(I,O) (Y’)
and combining (X)', (Y)’, we obtain that;

az+]+kp Hititk (

Lm0 3,92 (T:1) = purpyiger (T, 0)

By a similar argument, differentiating under the integral sign, and
using the facts that b(k)ikc—d(k)ikc = F(g)(k) —ikcb™ (k)+iked™ (k) =
F(g)(k);

lim o o (7.1) = o (7.,0)

riogioFot U V) = 340y702%
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Similarly, using the fact that py € S(R?), {b(k),d(k)} C L*(R?), so
we can apply the inversion theorem, we have that;

. gititkt2,
llmt~>0+ 0z Oyl 0% 9t2 (Q? t)

= lzmt_>0+ fRS (iky) (iko)? (iks)®(—K2c?)b(k) ettt

+(iky)" (Zk?g) (zkg) (—k2c)d(k)eket)etha I

- fng (iky ) (iko ) (iks)F(—k2c?) (b(k) + d(k))e*Tdk
= ot fR3 (iky ) (iko ) (iks)F (—k2c?) (F(po) (k) e dk

31+]+k N\ ik
N 27r)2 fRS x_zayﬂai_z()))(k)ek dk

_ 20IREG2(pg)
= O oriayioLF (T)
and;

. gititk+2 _ . 8i+j+kc2v2(po) _
limg o 6xi8yj6zk8t2( t) = 70y O (@)

As pli=0, pli<o obey the wave equation, so do the partial derivatives

oititk+ )
m|t>0, SO that, for [ Z 1, l evel, t 7é 0,

31+]+k+l 1 3z+1+k
mh;ﬁo (v?)z (Wﬂt;ﬁo

and, for [ > 1, [ odd, t # 0;

az‘+ j+k+1 _ -1 8i+ j+k+1
6mi3;j6zk8tl‘t7é0 = 1(V2) ? (axiajyjazkat)h#o

and, using the above, for [ even;

) PITIthtlpm ) 1o\l gitithpg
lzmt%om =C (V )2 (aziayﬂ'azk)

and, for [ odd;

: IR p@t) 112\t 9ttty
limy—o Gagamar =€ (V) 2 (5ag50)

In particularly, as all the partial derivatives of p extend continuously
to the boundary t = 0, we have that p € C®(R"), and the wave

equation is satisfied at ¢t = 0, 2 8t2 = 72 (p), (NB). This last claim
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follows from the fact that, using the integral representation of a solution

to the wave equation, /2(f) — c%% =0 in R? x [0, 00), generated by
the initial data (g, h), that limt—>0+% = (czvz)é% for

. §ititk+l 292\ =L gititk+ip
[ even and that lzmtﬁ0+W8zk]gtl = (C \V4 ) 2 Py for [ odd. By

uniqueness of the wave equation with specified initial conditions (g, h),
the same must be true for Kirchoft’s representation. The same result
holds for the backward wave equation with initial data (g, —h), so the
limit of the partial derivatives is same for t > 0 as ¢t < 0, and the limit,

as t — 0, of % — % (p) is zero. Using Kirchoff’s formula, as we

noted above, for t € R, p; has compact support, and it is clear that

the support varies continuously with t.
O

Lemma 0.3. If a solution to the wave equation fort € R is generated
by the data {pg, g} C C*(R3) with compact support, and Kirchoff’s
formula, then we have that, fort > 0;

p(T,t) = p(T, —t) iff () = 0
p(T,t) = —p(z, —t) iff po(T) =0
Proof. We have, if;
P@1) = e Jspen t9@) +p0(@) + Dpo(y) « (¥ —7))dS(G) (¢ > 0)
P(E,1) = o Jsngs—ay(L9@) +po(H) +Dpo() - (5—7))dS(7) (t < 0)
Then, for t > 0, p(T, t) = p(T, —t) iff;
7 Jspen (t9®) + po(¥) + Dpo(y) - (7 — 7))dS ()
= 7 Jsp.e (—19@) + po(¥) + Dpo(y) - (7 — 7))dS (7)
iff o Jspen 269(H)AS(G) =0
i [sp.c 9@)dS (@) =0
iff g(y) =0

as if ¢(7,) # 0, without loss of generality, by continuity, we can
choose ty > 0 sufficiently small with g|5p@, ) > 0, so that IJB@O ety IS () >
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0
and, for t > 0, p(T, 1) = —p(T, —1) iff;
7 Jsp.e 9@ + po(¥) + Dpo(y) - (7 — 7))dS ()
= i Jspen (19F) — po(@) — Dpo(¥) - (7 — 7))dS(y)
iff 7o Ssnen 2100(@) + Dpo(¥) « (7 — T)]dS(7) = 0
iff [5p.enlPo(@) + Dpo(@) « (7 — 7)]dS(H) = 0
iff [ p e P0@AS @) + ¢t fip 0 V(p0) «dS =10
iff fsp.e P0@AS @) + ¢t [5 0 div(7(po))dV () = 0
5 P0(DAS (@) + ct [ 72(p0)AV () = 0
iff po(y) =0

as if po(7,) # 0, by continity, without loss of generality, there exists
€ > 0, such that, for sufficiently small ¢g;

Syt te) P0@)AS (@) > dmec’t}

and, if M is a uniform bound on 7*(po)

4M7rc4tg

Icto [, ety V2 (P0)AV (T)] < =5

444
so that, if 4wec’t? > W%!t@ iff 25 > 3, we can choose 0 < tg <
C

(302

vVMc’
féB Toscto po(Y)dS(Y) + cto fB To,cto V2 (po)dV (7) > 0
o ) o )

to obtain;

U

Lemma 0.4. If p € C®°(R*) has compact support and satisfies the
wave equation [?(p) = 0, then if we define J by;

J(@,t) =~ ['_v(p)ds
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then J € C>®(R*) has compact support and satisfies the wave equa-
tion *(J = 0. Moreover, the combination (p,J) satisfies;

(i). 2 = —div(J)

Proof. Letting;
J@,t) =~ ["_v(p)ds

see [2] for the existence of the integral. We have, differentiating un-
der the integral sign, and using the fundamental theorem of calculus,
that, for (i,7,k) € Z>0;

gititks 2 3Z+J+k+1

OxtOyI OzF f oo Oz +t10yifzk dS (Z)

61+J+k+1jl _ —62 ai“i’j*‘rk*f.’lp

0x'0yI 0zF Ot Ox't+10yi 9zk
and for [ > 2;

81’,+j+,k+lj1 _ _02 ‘ai+j-f—k+1p

0x 0y’ OzFot! Oz +19yi 9zkotl—1

Jititk, 3 oiti+

As (ggig550% )0 € S(R?), and W satisfies the wave equation on

R*, by the proof in [2], we have that the integral (Z) is well defined.
Then, as p € C®(R*), we have that j; € C(R*). A similar argument
shows that the components {j,73} C C*(R*). By the fundamental
theorem of calculus, we have that;

8 — —257 (p)

By the previous claim, for t; € R, pto has compact support, so
that (/(p))s, has compact support and (%), has compact support. It
is clear from the above that the compact support Vi of pp and (7(p)):
varies continuously with ¢, so on the interval (to—¢, to+€), (2)](to—eto+e)
has compact support W, . in R*.

J satisfies the wave equation on R, as, using the fundamental the-
orem of calculus and the fact that s7(p) satisfies the wave equation;

Dz(j) = V2<7) - %2?9152
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_ 20v(p)
- f V dS) (_C ot )

_62(ft 19’y ds) v(p)

—c0 2 8t2

B E)
_ %Ep)) + %Ep)

we have that a‘] vanishes outside Supp(p;), and for any 7 € R3, there
exists two umformly bounded intervals [ty z ., toz ], [tl,m7+,t2,x7+] for
which T € Supp(pt), for t € [t1z—,toz -] U [tiz+,t2z+]. Using the
fact that Supp(p:) is moving and 7(p) satisfies the wave equation, so
uniformly bounded, we can define;

To(@) = [y Glde + 277 Gldt

== %—zdt (the ultimate value of J(T, 1))

with Jo bounded. On any ball B (6,_7"), we have that J — J, even-
tually vanishes, and, as div(J) — div(Jy) = 0 ultimately on the ball,

and div(J) = —% = 0, ultimately, otherwise charge would build up,

we have that div(J) = 0. It follows that (p,.J — J) satisfies the con-
tinuity equation, and the linkage relation;

Vp + 02 % — 6

is still satisfied, as :]0 is time independent. On any ball B _(6, ), we
have that ultimately J — Jo = 0, so that, as (0?(J) = 0 and J; is time
independent, ultimately;

V¥ (Jo) = (Jo) = *(J) =0

and .J is harmonic. As the components 7 (p);, for 1 < i < 3, satisfy
the wave equation, we have that that there exists constants C; € Ry,

for which | 7 (p):(, 1) < ‘C;T for 1 < < 3, so that;
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|7 (p) (3, )| < YATEHE

¢l

and;

Ty — t T, — t |z,

[To@)| = [ [;,7~ = (p)dt + [, —c* 7 (p)dt]

< 02[@2@,* - tl,f,*) + (t2,f,+ - tl,i+)” vV (p)|[t1,5,77t2,5,7]u[t1,5,77752,5,7}|

2 2 2 2 2 2
2 \/CI+CQ+C'3 2 \/Cl+c2+03
< Aoz —tig- ) + gy —tigs)

’ [t1,7,—| [t1,7,+|

as the intervals [tz —,f2z |, [t1z.+,t2z+] are uniformly bounded,
and the hitting times {t1z _, ¢,z 4} are proportional to the distance 7.
It follows, as bounded harmonic functions are constant, that J, = 0,
and J has compact supports.

0

Lemma 0.5. For any {p,J} C O(R3 x Ro) with compact support
satisfying the wave equations [1*(p) = 0,7D2(J) = 0 liny_op: = po,
limtﬁo(%?)t =g, limi_0Js = Jo, limtﬁo(%)t =g, we have the explicit
representation;
=) _ 1 T\ pike T\ p—iket\ ik J1.
p(T,t) = ] Jra (D(k)e*t + d(k)e™ ) e dk

7(57 t) = 1 fR3 ([_)(Z) eilet 4 aa)e—ilct)eﬂ@dz

We have that;
, _ -
VAp) - 258 =0, () - 25 =0
We have that p; € S(R?), as it is smooth and has compact support,

so that, we can apply the three dimensional Fourier transform F, and
using integration by parts, differentiating under the integral sign, we
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have that, for ¢ > 0;

F(72(p) (k1)) — LF(58) (R, t)

_ —/{:2.7:(p) (E t) 1 *(F(p)(k,D)

c? ot?

= —K2a(k,t) — 5 2akd

¢z o2
=0
where k? = k? + k2 + k2, a = F(p). For fixed k, we obtain the
ordinary differential equation;

d2ar
el _C2k2aE

so that;

az(t) = Co(k)e™t + Do(k)eket

with;

az(0) = lim,_oaz(t) = F(po) = Co(k) + Do (k)

a(0) = limy_oal(t) = F(g) = ikcCo(k) — ikeDo(k) (11)

and, solving the simultaneous equations (11), we obtain that;

= $(a5(0) + 70 (0)e™ + L (a(0) — gpa(0))e
_ b(E)eikct + d(E)e—z‘kct

where;
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b(k) = 5(F(plwo)l oy + e (5 @o)| ko)

d@) = %(f(P|(f,0))|(E,o zlic]:( 2l xo))|(E,o))

and [? = [? 4 [ + [2. Observe that;

{b,d,b,d} C LY(R?), (FG)

as by the classical theory;

{F (o). F((3)0). F(Jo). F((51))} € S(R?) € L'(R?)
and, using the fact that;

{F((50), F(5ho)} € C=(B(0,1)) < LA(B(0, 1))

and, by a polar coordinates calculation, {--
the Cauchy Schwarz inequality;

7} C L*(B(0,1)), by

ikc? ilc

F F(( =
{ ((zkc)O)’ zlc 0)} - Ll(B(()? 1))

whereas, by the rapid decay of S(R?) and a simple polar coordinate
calculation;

(ZUG0) PGy - p1Rs\ B(@, 1))

ilc

Using the fact that {b(k)e™t + d(k)e ™ b(l)e'e + d(l)e "} C
S(R3?) for t € R, by the fact that the Fourier transform preserves
the Schwartz class, see [3], we can apply the inversion theorem, to ob-
tain;
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zkct T\ ,—ikct\ ik JT.
P, 1) = o Jrs (b + d(k)e ke ) ek d;
7 f’R3 Z_) Z et + E(Z)e—ilct>€ii.idz

By the observation (F'G), we can split the integral into two integrals.

U

Lemma 0.6. Let (p,J) be defined as in Lemma 0.4, then if V; defines
the support of p;, we have that;

%(fvt pedV) =0

th Vi (p) =0

We have that %—z has compact support, and J is generated by Kir-

choff’s formula with initial data (Jo, —c*<7 (po)) and the representation
of Lemma 0.5 holds for J.

Proof. If t; < tg, with {t1,t2} C R, and {V;,, V4,} denote the compact
supports of {p;,, p, }, then as the supports vary continuously, and J,
and p, are compactly supported for each t € [t;,t,], J, and p; are uni-
formly compacted supported for ¢ € [t;,1,] in a ball B(0, p), for some
p € R~o. In particularly;

thl pt1dv = fB(@p) ptldv

thQ P, AV = fB ) Ptz dv

For t € [ty,1s], using the continuity equation, the divergence theo-
rem and the fact J; is uniformly compacted supported for ¢ € [t1,12] in
B(0,p), we have that;

%(IB(@;}) pedV) = fB(ﬁ,p) %dv
= — fB dw )edV
- — fJB(G,p) jt [} dgdv

=0
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so that;

Jo@n PrdV = [y PradV
Jv, pudV = [y, pradV

In particularly, %( th pidV) = 0. For the second claim, we have

that, by the divergence theorem and the fact that s7(p;) vanishes on
the boundary §V;;

Jo. V2 p)dV = [, v« (V(pe))dV

= f(svt V(pt> .dS
=0

By the connecting relation, we have that %—{ = —c? 7 (p), which has
compact support, because p does. As shown in Lemma 0.4, [J2(.J) = 0,
so, by Lemma 0.2, applied to the components of J, J is generated
by Kirchoff’s formula with initial data (Jo, (25)o) = (Jo, —¢* 7 (p0))-
Similarly, we can apply Lemma 0.5 to obtain the representation there
for J.

O

Lemma 0.7. (p,J) be defined as in Lemma 0.4, then we can define
antiderivatives, by letting,

p(7,t) = [*_p(T,s)ds
T'@,t) = [ T(T,s)ds

(p*, J") C C=(R*) and satisfy the wave equations, the continuity
equation and the connecting relation again. Moreover, if p,J, E, B) is
a solution to Mazwell’s equations, then (—%,E) satisfy the continuity
equation.

Proof. The definition follows from Lemma 0.6 as J can be represented
by Kirchoff’s formula. As is easily checked, if p € C*(R*) and the
components j; € C*°(R?1), 1 <i < 3, then p* € C*°(R?) and the com-
ponents j¢ € C*®(R*), for 1 <4 < 3. The wave equation holds for p®
and J°, as, using the fundamental theorem of calculus, differentiating
under the integral sign, the result about he left hand limit in [2], and
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using the fact that p satisfies the wave equation;

a t
P(p2) = [ 2(p)ds — L2
= [ LGeds— L%

__10p 1 0p

T2 ot c? ot
=0

and;

Differentiating under the integral sign and using the fundamental
theorem of calculus, the fact that the continuity equation holds for

(p, J), the continuity equation holds as;

op® e

= +V.J

=p+ [ _v.Tds
=p+ [l [l G
=p—p=0

and, differentiating under the integral sign, using the fundamental

calculus of calculus and the connecting relation for (p, J), the connect-
ing relation holds;
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I
|
ml’—‘
<l
+
Q=
S

o

Il
ol

The last claim follows, using the FTC and Maxwell’s first equation,
that;

a-2=y o —
o tdiv(E)=-2+ £

=0 U
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