SOME ARGUMENTS FOR THE WAVE EQUATION IN
QUANTUM THEORY 7: THE HYPERBOLIC METHOD

TRISTRAM DE PIRO

ABSTRACT.

Proof. The same results hold for w # c. If w # ¢, using Jefimenko’s
equations, we can prove the existence of fields (F,, By), for which
the components depending on J,, have compact support at time ¢, the

?%—‘t] obeys a

wave equation (with speed w)?. Also true that if (E, B) are defined

from (p, J), using Jefimenko’s equations, then (22, 98) are defined from

bt 0 ot
dp oJ . 5 . . .
(%7, 57) using Jefimenko’s equations, provided the causal solution ex-

1sts.

support increasing as w — ¢ and uniformly bounded.

For the sixth claim, following the method of [?], and the results in this
paper, we can construct charge and current configurations (p,, J,,) for

w € Rso, w # ¢, such that 02 (p,) = 0, 0% (J,) =0, v(p)+ 5% =0,
%f = —/.J, with the same initial conditions (f, g) and support V. All
the arguments for charge and current we have used for ¢, hold in the
case w # ¢, being careful to replace ¢ with w in the definitions. In this
case, the fields (E,, B,) generated by Jefimenko’s equations are well
defined for ¢t € R, with respect to charge, as, for given 7y, the locus
of {z : B(z,wt,) NV # (I} is bounded, because wt, = w(t — M)
contains the factor ¥ # 1, and for current, a similar idea, the proof be-
ing the same, as the current obeys the wave equation and has compact
support, receding at speed w. Then, we have that (py, Ju, Ew, By)
op

satisfy Maxwell’s equations. If we use Kirchoft’s formula for 37, with

s " o) 9? 9

initial conditions (520, 52 [0) = (520, —c*(V?0)]0);
8 — —
(T, t) = 47rc12t2 f&B(E,ct) (t £lo) + 79%0(3/)+

D(210)(®) « (7 — T))dS(7) (t > 0)
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g?<$ t) - 47r612t2 féB(E,—ct)<tgt§| ) + %’0(y>
+D(5%10)(@) « (7 — 7))dS () (t < 0)

We then have, using Jefimenko’s equations;

(g J, 2088y, = A [ %, — B2 ) g

4meg [F—7 Ameo JV Bt c
_ 1 1 [7F=7'|\ /O _ Ap (—
T dreo fv[4m2(t_|?;j’\)2 féB(F’,c(t—@))(t B )(Tg)(ya 0) + a_f(?% 0)

+D(%)(3,0) - (7 — 7)]dS () mhhdr’

1 o — Op /—
+47‘reo fV dme2(t— \T i féB(r ,—c(t— [7— T|))( c )(EQE)(Z/,O)_FE%(ZJ,O)

+D(2)(,0) . (7 — 7)dS(7) =L dr’

We can use then use the asymmetry (r; —r)) 1 = 0, 7/ = —r,
together with the symmetry, in the integral;

f&B e(t— =1 ki ))((t_ i )( )( f&B oft— 2= T\))((t—
']

"%xiﬁsw( 0)dS(y) (t = 0)

and vanishing in the integral of f(SB(?’ oo E=E) D(210)(g) « tzdS(7)

for large 7, see Lemma 0.2, and the decay in the re-

Ame?(t— \T ! \)2
maining term, to show that lzmw%c(pw, Jws Ew,Ew) exists and define
(pe, J e, B, BC) as liMy—e(puw, Jw, Ew, Byw), for the original charge and
current combination (p,, J.). It is clear that (pc, J., E., B,.) satisfies
Maxwell’s equations, and the configuration (E., B.) is defined by Je-
fimenko’s equations as an indefinite integral. A detailed exposition of
this claim is the the subject of the following.

We are mainly interested in the case w = ¢, but most of the calcula-
tions can be adapted to the case w # ¢, the important point being to
keep the factor ¢ in Jefimenko’s equations, (). Unless otherwise stated

I There may be a point that particles travelling at speed ¢ in the base frame
would contradict special relativity, but it is not clear with an extended charge
distribution that there are any individual particles. In any case, the associated
charge and current configuration (p,J) exists and seems to define fields (E, B)
satisfying Maxwell’s equations with special properties, at least in the case w > c.
The case when inertial frames travel at speeds w > ¢ is developed in [?].
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though, w = ¢. We can assume by the above and the proof in [?],
that p € C*(R*), for the components j;, 1 <i < 3, j; € C®(R?), for
t € R, p, and j;, have compact support, and the components j; satisfy
the wave equation (125, = 0, 1 < i < 3. It follows that the derivatives
% € C®(R*) and % € C®(RY), 1 <i < 3, that 8" and %];, 1<i<3

obey the wave equation and, for ¢t € R, g’t’t and agtt, 1 < i < 3 have

compact support. The fields {E, B} defined by Jefimenko’s equations
are given by;

E(?7 t) = 47rleo fv w *t’TIQ dr’ + fv clr tT)td - fv c2\r tr)d ,

(7, t) =52 [, AL "‘fv 7 Xtd

[7—7|2 cr—

s~/

We have using Kirchoft’s formula, that, for ¢ > 0;

p(@,1) = i Jspwent9@) + po(@) + Dpo(H) « (7 — 7))dS(7)
and, for t < 0;

P, t) = o fipe—ey (9@ + po(@) + Dpo(G) « (7 — 7))dS (7)

so that;

= [7—7|
tr) 7 t— r1—7}
(7 tr) dT/)l _ 1 p( c )( ) dr /

47reo \% |7 7| dmeg JV c[r—7|3

77|\ 8p(7,0
47!'60 fV W féB (7 e(t— Ir— Tl‘))((t o %) P(y ) + p(y>0)
+Dp(y,0) . (y —7))dS(y)
1 [F='|\ 9p(7.0)
AT Jsp e z=m1y) (8 = =) %= + (7, 0)

+Dp(7,0) « (7 — 7))dS(@)) =L dr’

Let;
Wy = {7 : 6B, c(t — =71) N B0, w) # 0}

Wy = {7 : 6B(7, —c(t — =71 0 B(0,w) # 0}
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With the convention (x) below, if ¢ > 0, we require that c(t— =) >
0 iff 7 — 7| < ct, so that W, C B(0,ct), if t > 0 and W; = 0 if t < 0.
Similarly, we require that —c(t — @ > 0 iff [F —7/| > ct, so that, if
t >0, Wy C R¥\ B(0,ct) and if t < 0, we obtain no restriction on Ws.
In either case, we clearly have, by smoothness of the data, continuity
and the fact that B(0, ct) is bounded for ¢ > 0, that;

1 1 [7—7| 3( 0)
|m ‘/‘Wl[47r02(t—M)2 f(SB ' c(t_M))((t_ c ) py +p(y70)

+Dp(7,0) « (7 = 7))dS (7)) |

C

7"1 T’
< fB(Oct Ctl c* *’1 |d7’
C
<7 fBOct ) [T—7 |2d7—
C 1 /
<7 fB(a,ct) FrdT

< G [T L2 sin(0) |drdOde

2 t
S 2n<Cy € dr
c 0

< 27%tCy
so that;

471'60 fV |J‘ E’r th ) fl (T7 t)

1 [7=71\ 9, ( ,0)
+fW2 471_02(15_\?—?")2 féB 7 fc(tf‘F*f/‘))((t - ) Py +P(y,0)

+Dp(7,0) « (7 = 7))dS (7)) dr’

c|r—

We can assume in the calculation that 7 # 0, by changing coordi-
nates with a translation given by 7, see below for the corresponding
time translation, as we can define a new pair (p?o,j?o) by p"°(Z, s) =
p(T — To,s) and T (Z,s) = J(T — To, s), for (Z,s) € R The new
pair (pFO,jFO) inherits the properties of (p,J), in particular we have
that p™ € C*°(R*), the components of J ", jio e C®(RY),1<i <3,
[?(p™) = 0, for 1 < i < 3, the continuity equation Q% =—-v T

18J

=% = 0. Moreover,

holds, and the connecting relation s7(p™) +
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we can use Kirchoft’s formula with the initial data for (pFO,j?O) given

by (po°, (apro )0, 760, (22— %)o) and we have that, making the substitution
7 =T+ 7

(Tt )e P —To,t;.) ", —
47re() fV [0—7]2 dT) 47reo Vo [Fo—7"]2 dT )1 =

rO (G ) I
47reo v \7"0 7|2 dr )1

for the corresponding retarded time ¢, = ¢t — [Fo=7"]
for the corresponding terms in Jefimenko’s equations.

, and, similarly,

We have, for 7 # 0, 7 # 0, that;
SB(F, —c(t — =1 0 B0, w) # 0

il 77— et — EEI ] < w

iff [7[7| + (ct — |F —7|)7| < w|F|

it [7[|[7] + (ct — |7 = 7'[)] < w[r|

it |[7|+ct —|F =7 <w

iff —w—ct<|F|-F—7|<w-—ct

so that, if ¢ > 0;

Wo={F: —w—ct < || = [F = 7| <w— et} NR*\ B0, ct)
and, if t < 0;

Wy ={F:—w—ct<|F|—|F—7| <w—ct}

Letting;

N = mazgepom (1(3)ol; lols [ Dpol, (Dp)ol)

so that, for 7 € Wy, using the fact the initial data is supported in
B(0,w);
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op(y,0 —
fisB(?’,*C()ﬁ—@)) ]%ldk@(y} < 47'('11)2]\/[

féB (t— 7=l |p@, 0)|dS(y) < dmw*M

f5Br ,—c(t— |7" il |‘Dp(y7 ) ( ))|ds < f(;B(* t [r— rl))ﬂB(a,w)
™)|dS(y)
< dmw?M| — c(t — =T
we have that, for s sufficiently large;
| 6 o s S e meny (¢ = 2282 4 p(5,0)
WoAB(0,5) gre2(t— =T ly2 J5B(F —c(t—1"21)) c ’
+Dp(7,0) - (7 — 7))dS @) |
2 =] 2
< f%\B O L T,‘|2(47Tw Mt — =] + dmw*M
+Hmw? M| — e(t — ) ) tamdr’
2 1 1 1
=W MfWQ\B(698)<C3|t7 ‘FZF/H + 3i— \F—CF/\P + - |7— T’|‘)|T 7 ‘QdT
We have that, for s sufficiently large;
1 / 1 /
= ?dT = d’T
fW2\B(075) |t— =7 |72 fW? ‘t_(mLz?.i/HF’\?)% |([F2— 277 +[7|2)
1 /
= f ] - dr
W2\B(0,s) ( |f/‘2 —2 f-f’ +1)% B .,
|?/|3|#7m‘(|‘;’|; 72‘;-/72 +1)
and, for |7| > max(t, 4|7|);
1 < c
(o 2 57413 = QeI
WS‘W,—W B (B 22+
so that;

1 ! B c !
fWg\B(ﬁ,mam(tA\ﬂ)) i ‘F_f"IIF—F’IQdT < fWg\B(O,mam(tA\F)) (20+4)|F’|3d7—
Similarly:;
i@ty T < —

Wo\B(0,maz(v/t,4]7])) |t—|rzrll\2|?—F’|2 — JWo\B(0,maz(vt,4[F)) (2¢+8)|7 |4

dr’

M(

y_
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so that;

77|\ Op(7,0
: ))((t—‘ . I) 0(,0)

+p(7,0) + Dp(7,0) (7 — 7))dS (7)) Ethrdr|

1
| fWQ\B(ﬁ,ma:r:(t,\/fA\?D) dme (t— le?/‘ )2 f&B(?/,fc(tfﬂ

2 (c+1) 1
<w'M fWg\B(ﬁ,mam(t,\/ZA\?)) (02(2c+4) 7|3 + c2(2c+8)|7

,|4)d7"

As above, we have that;

(L . ~ (7 tr )T
dmeg JWanB(0,maz(t,V1,4|F)) [F—7'|2

dr’); is finite and we claim that

(c+1) 1
fWQ\B(67max(t,\/ﬂ4|F)) ( c2(2c+4) 7|3 + c2(2¢+8) |7 |4 )

dr’

is finite as well. In order to see this, note that up to a bounded region,
W3 is contained in a family of real quadratic surfaces, parametrised by
a finite interval [—f, ] D [—w — ¢t,w — ct] degenerating to the plane
7| = |7 =7, if 0 € [~w — ct,w — ct], (*). Compactifying in P(R?) x

2 Noting, that for d € R0, |F'| sufficiently large, with the interval (—/3, ) sym-

metric, we have that, denoting by |[7/| — |F — 7’| = |d|, the union of |F'| — [T —7| =d
and |F'| — |7 — 7| = —d;
7| = | =7"[ = |d| or [F'| + |[F —7'| = |d]

iff [7 — 7> = [7'* — 2d|[7| +|d|?

so that, as |[F'| 4+ |[F — 7’| = |d| is bounded in R?;

| =7 =7 = d]

iff [7 — 7> = [7'* — 2[d|[7| +|d|?

iff R? — (2r17) + 2rorh + 2r3rh) + |72 = |7'|2 — 2|d||7'| + d?

iff —(2ry7] + 2rorh + 2r3rh) — (|d|? — R?) = —2/d||7|

iff [(2r17] + 2rorh + 2r37h) + (|d]? — R?))? = 4|d]2(r2 + ri2 + 1)

iff 4(rir) + rorh + 13rg)2 + A(rrh + rorh + rarh)(|d]? — R?) + (|d]? — R?)?

— AR 4+ 1)

where R = |7|. Note that the degenerate case of a single two dimensional plane

in R3 corresponds to the idealised case when the initial charge distribution pg is
supported at a single point.
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In coordinates (z,y, z), if we intersect a real generic quadratic surface defined by;
ar?® + By +v22 + oy +exz + Cyz +nx + 0y + 12+ k=0, (%)

where {«, 8,7,0,¢,0,n,&,n,t,k} C R, with a real generic plane Az + py+vz = &,
we obtain that z = % — Ry — %z, so that substituting in (x);

al§ =Ry — %22+ By +722 +6(5 — Sy — X2y + (5 — fy — §2)2 + (yz+
n(%—%y—%z)—l—&y%—m—Fﬁ:O

which defines a real quadratic curve in the coordinates (y,z). If the curve
is generic and unbounded, it cannot be a parabola, a circle or an ellipse, so by
the classification of conic sections, must be a hyperbola. By a result in [?], the
standard form of a hyperbola is given by;

2

—E=EEpE-p =1

2
y_
a2

so that by a further change of coordinates { = £ 4- 7, n = £ — 2, we can write

this in the standard form &n = 1, with asymptotes £ = 0, = 0, defining a curve C’
with asymptotes {l{,15}. If the original hyperbola C has asymptotes {l1,l2}, and
is defined using a set of coefficients {¢; : 1 < i < 5}, with a fixed bound |¢;| < f,
f € Rso, then there exists a linear transformation 7' : R?> — R? and a shift map
S : R? — R? such that (ST)(C") = C, (ST)(I}) = 1, (ST)(l5) = l. If T € C" and
7' is the nearest point to T on ] Ul, then |7 —7'| < % for |z| > 2. Tt follows that;

|(ST)(z) — (ST)(@")| < [|T|[z — 7|
<|ITIE
= 1Tl rem s

so that for j € C, we have that, for the nearest point i’ € I; U la;

= _ V2||T]|
7 -7 < ST 91

< \/§IITII|(§HTH+1)

provided |(ST)~17| > maz([3],2), (x), where 3 defines S, as;
[l = [(ST)(ST)~ ' ()

= |T(ST)~" + 3|

< (Tl + DIST)~ (3

provided [(ST)~'y| > |3|, in which case;
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[—5, 5], and using the implicit function theorem, we could choose a fi-
nite cover {Uy,...,U,} of R?\ B(0,1) x [-3, 8] and a sequence of maps
fi : Ui — Wo \ B(0, mazx(t, vt,4]F)) with constants C; € R~ such that
|fi(@, )] > Ci|Z|, |det(Jac(f;))| is bounded uniformly in ¢’ by constants
N; € R-o, and the maps f; cover Wy \ B(0, max(t,/t,4[F)). We then
have that;

(c+1)
| fWg\B(ﬁ,ma:L‘(t,\/fA\?))(02(2c+4)|F’\3 + (20+8 [7']*

< Z?:l | fUi fz‘*(c2(2(ccii))| 8 + C2(20+8 N |4)|det(Jac(fZ))|dId:rydt’

)dr'|

(c+1)
< X Ju, Nilgrapiniear + aeeasean) ddydt

2N, 8 (c+1)
< Zz 173 fRQ\B(ﬁ,l)(62(2c+3)l(wﬁy)l3 +

n 47N;B (e+D)r
< Zi:l Cz?’ r>1(02(20+3)r3 + (202—8)7“4)dr

Ydxdy

(2C+8)|($ y)|*

and;

EATE=S
BTG S

We can achieve the condition (x) with [g| > ||T||(|T~ 18| + max(2,[3])), as
[(ST)~'g| = max([3],2)

iff |T71(y) — T3] > max([5],2)

which we can achieve if |[T~1(y)| > |T~'5| + maz (]3], 2)

but as [7] < ||T||/7*(7)]

we have that, [T-1(7)] > A, so if [g1 > [[T1/(T'5] + maz(2, [§))), then

T @) = T3] + max (]3], 2)

We then obtain that, for 7 € C, for the nearest point 7’ € Iy U ls;

<l

[y -7 <

for [g] > D, where D = ||T|(/T~5| + maa(2, 3)), E = VZ|T||(|T]| + 1).
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_ n 47 N; (c+1) 1
- Zi:l c3 r>1(62(20+3)r2 + 02(20+8)7‘3)dr

_ 4N B 1 (c+1) 1
Zz 1 c3 <c2(2c+3) + 202(20+8)>

This proves that (— [,, |f ff L )1 is finite and well defined.

47re

We then have that, using Kirchoff’s formula for 22, with initial con-

2
ditions (5\0, % 0) = (§|07 —(7°p)o);

Bt’

RT) = gz Sypen (E5E10) + 500 @)+
D(%10)(®) - (7 — 7)dS(7) (t > 0)

@,1) = 5 Jsnie oy (t5E10) + %o (@)
+D(210)®) - (7 — 7))dS (@) (t < 0)

that, using Jefimenko’s equations;

(G tr N o 1 ap 7 — =7 (ri—=r]) 7 4
47r€o fV [r— dT)1_47reo Vat( t c )c\F—F’PdT

_ 1 1 [F—7 52 Op /—
~ 4meo fv[4ﬂ62(t_|7;j’\)2 f(;B(?/ C(t,M))(t - e )(a_p)(ya O) + a_l,?(y’ 0)

+D(%)(7,0) . (7 — 7)|dS(7) P2t dr’

c[r—7|2

+ e v wa(r etz (= =) (58)(@,0) + 2(,0)
+D(%)(,0) - (7 — 7)dS @) Tt dr' (QQ)

with the convention that § B(Tg,ro) = 0, when rq < 0, (%), using the
fact that, for fixed t € R, t—bf,' < 0, and for t € R>g, t— |F_j’| =0
iff ¥ € 6B(T, ct) with dr'(0B(7, ct)) = 0. Without loss of generality,
we have that {(Z2 522)o0, (22, po, (Dp)o(D%)o} are supported on B(0, W),

ot
for some w € R+, and, using continuity, we let;

M = mazgepom) (| (580l (2ol ID(5)lo])

We can change the time coordinate, as we can define a new pair
(pt77t) by p'(Z, s) = p(T, s+t) and jt(f, s) = J(T, s+t), for (T,s) € R*.
The new pair (pt,jt) inherits the properties of (p,J), in particular
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we have that p' € C*(R"), the components of T, ji e C™(RY),
1<i<3,2(p) =0,0%! =0, for 1 <i < 3, the continuity equation

Q&t B 7t h ld d h . . 1 ajt n
£ = \V/ olds, and the connecting relation v( ) 2 00 — = 0.

Moreover, we can use Kirchoff’s formula with the initial data for (p, 7 )

t —t
given by (ph, (%2)o, o, (68{5 )o) = (pi, (L), Jp, (2 ) ) and we have that;

P(T’ tr)AdT/>1 _

drey JV  c[7T—7|

31 dT’)l

47reo fV c|r 7|

[r=7"]

for the corresponding retarded time t, = — , and, similarly, for

the corresponding terms in Jefimenko’s equations.

We can assume in this calculation, that 7 is disjoint from the a
ball B(0,s) containing the support of {(mz) L (22)]o, D(2)]o}. This
is because, if t is fixed, then we have for a sufficiently large ¢’ >
t, that 7 is disjoint from a ball B(Tg,s) containing the support of

{(gté’) (%Nt/,D(%)h/}. Then, using the uniqueness property, we

have that p(x,t) is determined by the shifted initial conditions

{(‘3;) (%)h/, D(%’)h/}. By a change of coordinates, ¥ = T + T, and

considering p™, we can assume that Ty = 0, 7 is disjoint from B(0, s),
with the support of {(at2) (%)]t/, D(%)h/} contained in B(p, s). By
a further change of coordinates, t” = ¢ +t', and considering p', we can
assume that ¢’ = 0, with the original ¢ moving to t — t; so that we can
assume t < 0, but we can’t assume that t = 0.

It follows, as t < 0, that in (QQ), we can ignore the term;

(7 tr)td ) 1 fva_p(—/ . |7— r\)(m T,l‘gd ’

dmeg JV  |[F—7 4meq ot c c[r—7

_ 1 1 [T=F|\/0%p\ /— 8p /—
T 4meo fv[MCg(t_l?;F’\)Q f(;B(;/ c(t,M))(t - e )(5@)(%0) + 5%(3/70)

+D(2)(,0) . (7 — 7)]dS(7) =L dr’

and, we are left, simplifying the radius, from (QQ) with;

+a vl W S5~ = l?c |)(gi2 )(7,0) + %(7,0)
+D(%)(,0) - (7 — 7)]dS(H) F=mhdr (QQQ)

If d € B(0, s), we let;
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o ={F eR*:d € 6B, —ct+[F—7|)}
={FeR3:[d—7|=—ct+|F -7}
so that, in (QQQ), we have that V' = UEeB(ﬁ,s) Vs

As B(0, s) is open, we can choose d7 > 0 such that B(d, d7) C B(0, s).
By the calculation above, we can assume that the real unbounded hy-
persurface V5, is a real quadratic surface and, by the calculation be-
low, that the 7asympt0tic cone Z3, is a union of lines parametrised over
a finite interval. For a line [ appearing in the asymptotic cone, fix-
ing 0 < € < &3, and r(e) sufficiently large, we can assume that for
7 e 1N (R*\ B(0,7(e))), there exists 7 € V5, with 7/ — 7| < ¢, see
footnote 2, so that;

5B, —et-+ [~ 7)1 B,5) = (9B(F, et + [F— ) + (7~ 7)1
B(0, s)

and, as d = d+ (F' —r") € B(d,6y) C B(0,s), that 6B(F¥, —ct + [F —
7|) N B(0,s) # 0 and passes through d e B(0, s) with |El/ —d| < e
Let P; be the plane passing through d, with P; perpendicular to [ and
mtersectmg [ at pg. Let Ty be the tangent plane to 0 B(7', —ct+ |7 —7'|)
at d , intersecting [ at py, so that we can assume, for sufficiently large
r(e), that [p; — py| < e Let 7, = pz — (7' — Pz = 2z — 7. Then,
for sufficiently large r(e), we have that 7, € I N (R*\ B(0,r(e))),
dB(7 Topp: ct—|—|r T, )N B(0, s) # 0 and passes through leopp € B(0, s)
with ]d

—d | < e. We have that;

opp

(7). Using the facts that |%§]0| < M on B(0, s), the surface measure
of §B(F', —ct + |F — 7'|) N B(0, s) is at most 27ws?,
have, for sufficiently large r(e), that;

77|\ 0%p\ (— —\ (r1—r))
e = S e — D (G 0l (7) =

= _ o= =
Topp = 2Dg — T, We

L L [r—7 o | (r1—74 o )
+m[m Js5(0, et rOppD(t—T”)(a—p)(ya 0)dS G) =
— 1 1 (7‘ T ) a
N |47f€0[47rc2(t—‘?f'|)c\r1 r’lP f(SB(?’ —ct+|F—m)(a_p)( 0)]dS(y)

1 1 (ri— ] o 52
i e T Sty st () @ O1AS B)

— =7
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BT 1 (rizry) 1 (r—ri, i
= |[E[4nc2(t_|7—7’\)cl?lf?llfi‘ T ) féB(?’,—ctJrl?—?’l)(a_p)( 0)1ds ()

dmeo 4 2 (- 7 Tcopp\) c|F— ropp|2

ct_H?_?gppD (%) <g7 O)ds<g)

1 1 Tl 7“1 opp
+[47reo Ame(t— [T—Topp! ) o|F =70, 2 féB(r
c

o fzSB(F’,—ctH?—F’D (%22) (¥,0)dS ()|

opp’

= ‘ 167r21

(ri—r) (=TT p 2 T g2y (n=rh) =) |

s
R L

opp|2
p 1 1 (r1=71 opp)
féB(?’,fctJrl?f?’D((?t?)( )]dS( ) [47T60 A 2(t7|7*7ﬁ>pp‘) cfr— Tip;’ﬁ]
féB

e RG0S D) fyprsirry (22)T.0)dS @)

[ N——
(t_ CO;DP )lr_rapp‘z

OPP ’

\r-H" 2pd

= |t [ (= )P+ —2pgl?— (1= T 7 2) 2r1—2pg
- 2 3 T o 7+ —2 T+7 -2
N e P G P (=T o 2
2p _ 1 1 (r1+r1721k71)
f(SB(F’,—ct-HF—F’D(W)(y’ 0)]dS(y) + [47reo ame2(t— T 2raly el =2pg]? )
%p %p
sses, —eorirr (G T ST = [0 e (58 @ 0)dS ()|
77 —2p ] )\

Ms (o) (O 2pglt (- DR | M | 2r1—2pg,,
— 3 7 —2p— 3 74+7 —2p—]

8mege (t— |rzr l)\f—f’\Q(t— |7+ - 2pd|)\7+?/—2p3\2 87reoc \ + - del)\F—i-F’—QpE\Q

| 1 (7’1+T'1—2pa,1)|
T —2p—] — D]
471'6()4 cQ(t—‘T T pdl) |47 —2po]

[ Sty mctirrty ) (5) 0 OIS @)= fipir v v (58 @, 0)AS ()]

1
|3 + 1672 5003 [T+ =2pgl
|(t————5)IT+7"—2pg]

7Ct+|77?gpp|)<%2£>( )dS f(SB T 7Ct+|r r’|)<g_i§>(y7 O)ds(yﬂ

opp7

— 7reoc3|7" |3 + 27reoc4|r

|f§B
(P)

(following the method in (i7), noting the O(|7|*) term cancels in the

o o(mpo(F ) 1
first long term to obtain =54 5

Opp»

Change coordinates, so that the azimuth angle 6 of the sphere 0 B(7, —ct+
7 — %), is centred on the line passing through {%,d }, giving coordi-
nates;

7 + sin(0)cos(¢p)T + sin(0)sin(p)y + cos(f) (3/ —7)
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O<o<m-m<¢<m)

for a choice of orthogonal vectors {Z,7,d — 7'} with modulus —ct +
|7—7'|. Similarly, choose the azimuth angle Hopp of the sphere 6 B(T,,,, —ct+

is centred on the line passing through {7 }, giving co-

T =Tol)s
ordinates;

opp’? OPP

7'+ 511 (0opp) cOS (Popp) Topp + Si1(Oopp) Si12(Popp)Uopp + €O (Oopp) (a;pp -
7o)
opp

(0 S eopp S ™, —T S ¢opp S 7T)
. _ _ —/
for a choice of orthogonal vectors {Zopp, Yopps Aopp — Topp) With modu-
lus —ct+|F—7,, |. We have, for points {7, 7, } of intersection between
B(0,s) and 6 B(T', —ct +|F —7|), B(0,s) and 6 B(T) , —ct + [T —
that;

T opp> 0pp | )

0(7') ~ sin(0(7)) < ==
Oopp(Topp) 2= ST Oopp (Topp)) < —srpsrr (TT)

and, for sufficiently large r(¢), choosing {T, ¥, Topp; Yoy, compatibly,
we may assume that;

T — Topp| < 2¢

for {7',q,,,} defined by coordinates 0 = 0,p,, ¢ = ¢opp with 0 < 0 <
max(Omaz, Omaz.opp), Where;

Qmax - mawogq&g%e(q/)

for ¢ in B(0,s) NdB(T', —ct+ [T —7'|), with coordinates {6, ¢}, and;

—/
Omaz,opp = MAT0< <27 00pp(Topp)
PP

—ct+[7—7, 1), with coordinates {6,,,, Popp }

opp

for g, in B(0, s)Nd B(T,

OPP ’

It follows that, for sufficiently large r(¢), using the surface measure
dS = r?sin(f), the fact (I'T) and 7%(1 — cos(1)) = O(1), and footnote
2, for sufficiently large r;
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|faB(ngp’_CtHF_FZWD(%M )ds f5B7" ,—ct+|r— r’|)(8_p>( )dS( )‘
maz(Omaz,0maz,opp .
< 26|V (((28)0))| po.s) 127 (—ct+[F—T,, ) [ ' sin(6)do
= 2¢[7(((Z£)0) | p(g.0) |27 (—ct+[T =T, )2 (108 (maz (Bmaz s Gmas.opp)))
< Ce
D

where {C, D} C R~o.

It follows from (P), for sufficiently large r(¢), following the method
of (i1), that;

1 1 [F=7'|\ (8%p (ri—ry)
|47r60 [—*:/2 faB(?’,—ct+|F—7’|)(t T e (5 ot2 £)(1,0)]dS(y )CF—F}P

Ame?(t— L 1y

2

1 1 t_ IFingp| 6_E dS rl 7’1 opp)
+4ﬂ-€0 [4ﬂc2(t |7— Topp‘ f(sB(roppyfctJr‘r ropp')( c )(8t2 )( )] ( ) |2 ’
< Ms? 1 D _ 1
— meoc3 |3 + 27reoc4| /|3 + 1672¢oc [T/ +1] I(t_\T+T’—2pg|)“F+?,_2pE|

c
B
S |?/|3

where F; € R+o.

(71). Using the facts that |%§|0| < M on B(0, s), the surface measure
of B(F', —ct + |7 —7|) N B(0, s) is at most 27s*, 7, = 2p; — ', we
have, for sufficiently large r(¢), that;

(e o=y Jom -t (5 @ OIS (@ el

4 (t— P=7

1 1 op dS (7'1 7‘1 opp

+47T60 [4 2(t |7— Tgpp\ f(sB(Toppv ct+‘r Topp')(a ( ))] ( ) 07 */ |
1 27 M s? 1 27 M s?

_ =7l _ =__=/

4mege dme? (t— |7 c"“ ‘)2|7’—r’| 4mege e (t— |7 Tcopp\ )Z‘F_?,Opp
_ Ms? + Ms?

8meeg (ct—|[T—7'|)2|[F—7'| 8meeg (ct—[T1+7|)2 |71 +7|
— Ms? 4 Ms?

8mceo|F—T7 \3\| +1|2 8mceo|F14+T" W(m 1)]2

Ms? Ms?

— 4meeo|[T—7|3 8mceo|T14+7|3
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3Ms?
— 8mceeo|T']?

_ By
Gk

where 7y =7 — 2pg, Ey € Ro.

(17i). We have that;

(L= Joneavirrny DG @:0) - (7 = T)AS @)

dre? (12T

9 (r1—7] opp
+ﬁ[w de(ropp —ct+|7—7, |)D(5§)<y70) (y Opp)]ds( )c|r 7"1 ‘
= o= [W( A+HT=1) [ —eripry D(G0) . 0)-(2(7)))dS (g )J,f :1@

1 1
+m[47r02(t LW)( Ct+|7’ opp féB(ropp —ct+|F—T1, |)D(a_p)<y,0)

- — (TI Tl opp
(Zopp(9)1AS (Y) T |

1 (—ct+|7—7") _ _
< 4mepc dme? (t— \7—7’\ )2[F—7| | féB(?’,fctJr\Ff?’\) D(a_p)(y7 O) (y)ds<y>|

; (cettir—l,,) op o
= i 1S et 0 D)@ 0)Z0p (0)dS )
(NN)
Letting Zg = %, so that |Zg| = 1, R the surface measure of

dB(F, —ct + |F —7|) N B(0, s), using Lemma 0.2, following the method
of (i), we have that, for sufficiently large r(¢);

| s, pr PG5, 0) - ZG)dS (D)

= s sy PG @ 00(Z@)~20)dS @)+ [5p00 —cosirrpy P(5) (T 0)s
ZdS ()]

< Ssnor—atsirsny D@ 0@ ~20)dS @) sp00 —ets1rrpy P50 (7 0)]-
ZodS ()

< RmaxgeB(ﬁ,s)‘D(%%)( 0)[|z(@)—7|+| f(SB(F’,—ct-H?—F’DD(%?)( 0)dS(¥)-
Zo|
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< RMmaz e p o [20) = %0l + 51| fypr s prry D)@ 0)dS @)
< RM|(1 = c05(0maz, $i(Omac)l + | [ s rrpy D(5) (7, 0)dS (7)
~ Jp, DG @ 0)dS@)| + | [ D(5)(@,0)dS )|
= V2RM (1=c08(ma)) 4| [ipr 1 ir 71y D)@ 0)dS @)= [, DT, 0)dS (@)

< RMF@,,,, + Ge

2sH w
< —ct+[7—7| + 147

—ct+|7“ 'r" + |1+T’|
where {F, G, W, H, Ay, B1} C R~o. Similarly, there exist {As, By} C
R0, such that
|f(sB (Foppy—ct+T—Topp) D(a—p)(y70) -i(y)dS@ﬂ = ctH* Topl + |l+r

— Az + Bs
—ct+[T+7" —2p4] [14-2p;—7|

op|

so that, from (NN), following the method of (i7)

(v ey Jose s D @,0) - (7 = TS @)=

42 (t— =
ri—r] Opp)
|) D(a_p)<y7 0) ( opp)]ds( ) c|1“ 7 pp‘Q |

1 1
+47’I’60[4 (- 7= ropp\) f&B(ropp, T,

1 (—ct+7—7) ( + )
— Ame0C 42 (t— \F—F'\)2|F | ct+|r 7| |1+r’|

+ 1 ( Ct+|7" ropp) ( A2 _|_ BQ )
47reoc47rc2(t_\r Tcoppl) =7l —ct+[r+7 —2p5] [14-2p5—7|

_ 1 1
T 16w2epc? \(t7|F77|)H7‘ r’\< ct+|r 7| + |1+F/|)
c
1 1 Ao Bo
+167r26002 I™—Toppl 1= <fct+|?+?/7255| + |1+2ﬁng’|>
‘t_fnr_ropp‘

E3

S F/|3

where E3 € R~¢ ((4), (i7), (i4i))

By the calculation below, we can assume that the asymptotic cone
Z3, of the real unbounded hypersurface V3, is a union of lines parametrised
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over a finite interval [«, 5]. It follows that we can define maps 6 :
R x[a,B) = Zg,;, 02 : R x [, B) — Zg,, such that for fixed v € [a, §),
0r(r,v) €131, 92(7’ Y) €L, gas T € R where the intersection curve C. 5
has the two real asymptotes {l, 7,,/, 3.}, and, such that, fori € {1, 2}

(4). 0:(0,7) = pg.,.» (using the notation above)

(@) 0:(r, Y)opp = 61(=7,7)

(7i1). There exist R; C R~ with 6; diffecomorphisms outside [— R;, R;] X
[, B), with the partial derivatives uniformly bounded.

(). Im(Or |\ (- ry 11 xlo8) 0 IOl R\ [ o o) x ) = O

(v). For ry > 1y > Ry, |0i(re,y) — 0i(r1,7)| =12 — 11

It follows from (i77), (v) that the pullback;

91|;‘2\[_R17R1]X[a75)(dLeb|Zl )= |691 X 891 |drd7 f(r,y)drdy

has the property that f(r,v) has order O(r), uniformly in v and
flr,y) = f(=mr,7), for r € R~g. For R € R+, with R > R;, can define
the regions S, C R X [o, 3), by;

Sri =A{(",7): Bi < |r'| < R,y € [a, §)}

with corresponding regions 0;(Sr;) C Zg,

Then, by the calculation above, letting;

H(T') = 47360 [+*/2 de(?’,—ct—HF—F’D D(a—”)(yy()) (y—7")]dS(y )clTrl :,1@

dme2(t— =1 = y

we have that, for r > R;;
01 H (r,y) + 01 H(—r,7)] < §
|f(r,v)] < Dr

(05 H (r,9) + 07 H(=r, 7)) f(r, )] < 57
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and;

limpg_so0 R> R fei(sm) H(7)dr' = limpg_00 >R, fSR,i(HfH)(r, v) f(r,y)drdy
= UM psoo iR, fio g s O7H (1) (r, ) dr [ 03 H (r,7) £ (r, y)dr]dy

= UM psoo iRy fio gy OFH (1, 2) f(r, y)dr [ 03 H (=) £ (=7, 7)dr]dy
= limnsoc.ror, fia gy S O1H () + 07 H (=r,7)) (1, 7)drdy

= Jiop) fEf(HIH(n ) + 07 H(=r,7)) f(r,y)drdy

where, letting G(y fR (OTH (r,y) + 07 H(—r,v)) f(r,v)dr;

GOl < [g, SPdr = =3P

T

_ CD
=%,

so that;

UMpsoo, k>R, Jio gy Jr, OTH (r,7)+07H (=1,7)) f(r,7)drdy = [, 5, G(v)dy

exists and;

1im e soo, 15 Ry fia 5y S (O H (r, ) +05 H(=r,7)) f(r,7)drdry| < S22
It follows;

limRHoo,R>Ri fei(SR,i) H(F/)dF/

exisrs, and;

|limR—>oo,R>Ri fei(SR,i) H(F’)d?’l < CD%—CM)

as well. (UU)

..... Let the lines appearing in the asymptotic cone Z3,, parametrised
by [a, ), correspond to the system of hyperplanes H,, v € [o, §) with
fixed locus @7,. Then, for T € V3, \ Q,, |Z| sufficiently large, let T,cq,
be the nearest point on the asymptotic line [34 .+ and Topy be the near-
est point on Vg, NH, to (ZTnear)opp- By a simple adaptation of the above
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argument ((4), (1), (i7i)), we have that, for || sufficiently large, there
exists C' € R+, with;

|h(F,) + h( opp)l S ‘

where h(7) = (ﬁ—pff: ff/? )i

(Follow argument of (UU), using the facts, that for sufficiently large
7|, dVg, ~ dZz,, dVg, = g(7")dZg,, with g( ') =~ g(7,,), for the sur-
face measures on V3, and Z3, respectfully7 as;

891 (—/ )

7,y) = LT, )

for the appropriate parametrisation 6y, so that;
\W(T)g(T)dZg, + h(Top,) 9(Topp) A2 4|

< |(R(T) + W) 9(T)dZg | + [(Top,) (9(Toy,) — 9(7))dZg,,|
= O(35)O(R)drdy + O(5)O(%)drdy = O(5)drdy.

Same idea for asymptotic cones defined below in Lemma 0.4, reflect-
ing the branch at infinity.)

................... Ift =0, then Wo = {7 : —w < |F'| - [T —7| < w}, and,
by the calculation in footnote 2, we can, for sufficiently large 7, char-
acterise Wy as a family of quadratic surfaces, parametrised by [0, w],
degenerating to the plane 7 = |[F—7|. We denote by Wy, for 0 < s < w
the locus;

{7 = =7=stU{F : || = |F = 7| = —s}

characterised, for s # 0, by the quadratic real surface V; in footnote
2, with Wy being the plane {7 : [7| = [F—7|}. Fixing s¢ # 0, for a real
generic hyperplane H,, using footnote 2, the intersection V,, N Hy, is
a real unbounded generic quadratic curve Cy, C Hy,. In particularly,
by the classification of real quadratic curves as conic sections, Cy, is
generic hyperbolic and has two real asymptotes {ls, 1,ls,2}. If we take
a generic real 1-dimensional pencil of hyperplanes { Hy, , : 7 € R}, such
that J,cr Hs,r = R?, with base locus [, then clearly;
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UreR(VSO N HSOJ") = VSO

and, using O-minimality, there exists finitely many open bounded
intervals {I; : 1 < j < n} for which Vi, N H, , is finite, r € U,,,, I;-
Let Py, = R\ U <<, Ij; and we still have that;

UrePSO (V:Go N HSO,T) = V:@o

We define the two dimensional asymptotic cone Z,, of Vj, to be
UTe Py, lsy.r1 Uls, r2 where the intersection curve Cy, , has the two real
asymptotes {ls, 1, lsor2}. By choosing the base locus [y, to intersect
Vs, in a finite number of points and noting that for a sufficiently generic
family, V,, N Hy,» N W = 0, in coordinates [X,Y, Z, W], where V, is
the projective closure of Vi, in P(R?), is mobile, and compact, so can
be paramertised analytically by a finite interval. we can assume that

P, is a finite interval /5, when parametrising Zs, and V,, so that;

Urelso (‘/:90 N HSOJ’) = ‘/?90

Let d7; be the surface measure on Z,, obtained from the pullback
of Lebesgue measure with the inclusion of Z,, in R* and, similarly,
let dr;, ., and d7 ,, be the line measures on Iy, 1 and [, .2, obtained
from the pullback of Lebesgue measure, and let dry ., , be the union of
the measures on s, ;1 Ulgyr2. coeeeveereennn If t1 < tg, with {t1,t2} C R,
and {V;,,V;,} denote the compact supports of {p;,,ps,}, then as the
supports vary continuously, and J; and p, are compactly supported
for each t € [t1,t5], J; and p, are uniformly compacted supported for

t € [t1,t5] in a ball B(0, p), for some p € R~o. In particularly;
thl prdV = fB(Qp) pr,dV

th2 ptzdv = fB(@p) ptzdv

For t € [t1,1s], using the continuity equation, the divergence theo-
rem and the fact J; is uniformly compacted supported for ¢ € [tq, 5] in
B(0, p), we have that;

%<]B(§,p) pedV) = fB(ﬁ,p) %@dv

== fB(ﬁ,p) dw(j)th
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= Jsn@y Jt+dSdV
—0
so that;
fB(ﬁ,p) prdV = fB(ﬁ,p) Pr,dV

thl pt1dv = thQ thdV
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In particularly, 4( th pedV) = 0, (}). The same argument applies

for %, with associated current J; = —c? V_(p) a{ld compact supports
W;, t € R, obeying the wave equation (0?(.J;) = 0. Tt follows from the
Reynold’s transport theorem, (*), the divergence theorem and the fact

that J; vanishes outside W, and V,, that;

3

In fact, the result is true for (p,J) satisfying the continuity equation, when
J fails to have compact support, and the components j;, for 1 < i < 3, are
uniformly of rapid decay, in the sense, that for any finite interval [tq,t5], there
exists constants Ci2,, € Rso such that [j;(Z,t)] < % for t € [t1,ts]
and |Z| > 1. In order to see this, suppose that on a finite interval (¢1,t2), p
is supported uniformly on B(0,p). and %th pdV # 0, for some t € [t1,ta].
Then there exists an interval (to — €,to + €) C (f1,t2), such that, without
loss of generality, %th pdV|(t0_57t0+€) > 0, and, by the intermediate value
theorem, we can assume that th pAdV | (ty—etote) 18 strictly increasing, with
thME Pto+edV — thU ptodV > § > 0, (x). Using the hypotheses on J, we can
choose r > p sufficienly large such that for t € (to —€,tg+¢€), | fsz(ﬁ,r) Ji.dS| < 61,

and by the continuity equation, for ¢ € (tg — €,tg + €);
ko fB(a,r) pdV|] = |fB(6,r) V|
=|- fB(ﬁ,r) div(J)dV|
=| faB(ﬁ,r) J. d§|
<&
and the intermediate value theorem;
| [, Pro+edV = [,y ProdV| < d1€

so choosing §; = <, we obtain that;

2¢
| fB(ﬁ,T) DtotedV — fB(ﬁ,T) Pt dV] = | tho+< DtotedV — tho PtodV|

<

Nl

which contradicts (x).

4 The Reynolds transport theorem is true in this case, but is not the usual form,
as, due to the failure of analyticity, there can be jumps in the support. There is
also an issue with using the formula pv = .J, when substituting for the velocity of
the area element. This could be resolved in [?].



TRISTRAM DE PIRO
Ju )V = & [, GV
= L(A(fy, av) — [y, din(7))
=—= div(J1)dV
=—% [, J1-dS
=0
In particular, at ¢ = 0, we can assume that;
Sy 72 (p0)AV = [ (S50 (58)0)dV =0 (0), (7).
We can define antiderivatives, by letting;
P (T, t) = ffoop(f, s)ds
T T, t) = fjoo J(T, s)ds (if the integral exists)
As is easily checked, if p € C*°(R?) and the components j; €
C>*(R*), 1 < i < 3, then p* € C*(R") and the components ji €
C>(R*Y), for 1 < i < 3. The wave equation holds for p* and J*, as
using the fundamental theorem of calculus, differentiating under the

integral sign, the result about he left hand limit in [?], and using the
fact that p satisfies the wave equation;

1 9p

= [1 Vi (p)ds — £%
_rt 109% 1 9p
LN X7 P

2 a2 2ot

5 Note that you can also deduce this, using the divergence theorem, and the

fact that 7(pg) vanishes on §Vp;

Jy, V2 (0)dV = [51, 7 « (V(po))dV

= féVU V(po) +dS

=0
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t192Jg, _ 19
- ffoo c2 ot2 ds c2 ot
107 _ 107

Differentiating under the integral sign and using the fundamental
theorem of calculus, the fact that the continuity equation holds for

(p, J), the continuity equation holds as;

=p+ [ . Tds
=p+ [l Sl —Fds
=p—p=0

and, differentiating under the integral sign, using the fundamental

calculus of calculus and the connecting relation for (p, J), the connect-
ing relation holds;
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....... Then the fields {E, B} are well defined by Jefimenko’s equa-
tions and the components are of uniform very moderate decrease.

O

Lemma 0.2. Cancellation Lemma

Let g € C°°(R3) with compact support V. C R3, then for a hyper-
plane H C R3, we have that;

fVﬁH V(g)dﬂ =0

where p is Lebesque measure on V N H.

Proof. With out loss of generality, we can assume that V' = B(0, r), for
some r € R+ and H is a hyperplane passing through 0, with the equa-
tion a4+ Py +~yz = 0. Assume first that {a, 8,7} C R are distinct and
non zero. Let pris, pris, prag be the projections onto the coordinates

(z,9), (z,2), (y, 2). Let;

6 We don’t necessarily have that (pa,ja) has compact supports. On a finite
interval [t1, t2], for sufficiently large T, we have aait = p =0, and;

2 _a
VQ(/OG) = C%aazpt

=0

Let h(T) define p® for sufficiently large 7, then, as R3 = U,er Supp(p:)©;

VA (h(a)) = C(h(@)) =0

everywhere. We can repeat the argument for the antiderivative J to obtain
&(T) defining J" for sufficiently large Z. so, as R3 = Usier Supp(J¢)¢, we have that

v2(e(@)) = 0?(e(z)) = 0, and, clearly, for the pair (h(Z),e(ZT)), we have that;

div(e(@) = -2 =0

=0

and (p* — h(Z),J" — ¢(T)) has compact supports and inherits all the properties
—a

above for (p®, J").
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gia(z,y) = g(x,y, 2(z,)) = gz, y, -2 — &)
g13(z, 2) = g(z,y(z,2), 2) = g(z, —F — 5, 2)
923(y, 2) = g(x(y, 2),y,2) = g(— % — Z,y,2)

Then, by the chain rule;

0 3

é’ﬁ\(m) = ( + y - %a_g)(%yz(%y))

9 _(dg , B9 _BO

32wy = (52 + 52 — 32 @)
so that;

B 9 _ (B=) (D 0

S8 @) — 5B @y = 5 (5 + D @wr@a)
and;

dg |, 0 ) )
(a_ggc + ﬁ”(%yﬂ(%y)) - (510{) (g é’,lf |(x,y) - % 912| (@)

and, a similar calculation holds for {g3,g23}. It follows that, using
Fubini’s theorem, the fundamental theorem of calculus and the fact
that gio vanishes on 0(prio(V N H));

8 0 d o 9
fVﬂH g+8_z)dlj' = pr‘lz(VﬂH)<ﬂ—ia%_/B—_a%)|( z,y) 612( ﬁ V)dxdy
=0
where c1a(a, 8,7) € R is non-zero. Similarly, using {pris, proz};

89

fva d,u fva + gg)dr“

so that;

8
fVmH agdﬁ‘ == fVmH 6gd“ fVﬂH = f\/mH agdr“
and;

16)
anH a_gd“ =0
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Similarly:;

9 9
fVmH de“ = fVmH 52dp =10

and;

fVﬂH V(Q)dM =0

By continuity, the result holds for any hyperplane H as the initial
assumption was generic.

g

Lemma 0.3. Uniqueness of Representation of Arcs

Suppose that T € R\ B(0,s) such that §B(z,r) N B(0,s) # 0, then
there exists a unique 0 < w < s such that B(0,w) intersects B(T,r)
at a single point Dy, with the property that the spheres 0B(T,r) and
0B(0,w) share a tangent plane at Py,

Proof. Suppose that 0 ¢ B(z,r). Let [ be the line connecting the
points {0,7}, intersecting the sphere 6 B(0, s) at g. Then g € B(T, ),
otherwise 6B(Z,7) N B(0,s) = 0. We have that §B(z,r) N B(0, s)
partitions B(0, s) into 2 disjoint, connected regions, and the regions
containing 0 and § are distinct. It follows that the line [ between 0
and ¢ intersects B(7,r) at the point p;, € B(0,s). Choose 0 < w < s
such that § B(0,w) passes through Dz, Then, as the tangent planes to
the spheres 6B(0,w) and B(T,r) at P, are both perpendicular to
and pass through p; ., they must coincide. Suppose that the spheres
6B(0,w) and §B(T,r) share a further intersection point P’ with the
properties that the tangent planes at P’ coincide, then the lines [ and
I', where I’ connects the points {0,7'}, both pass through 0 and Z, so
must coincide and P’ € [. Then, as p;,. and P’ are distinct, it follows
that ' ¢ 0B(z,r).

O

Lemma 0.4. Fiz 0 < w < s and withT ¢ B(0,s), t <0, let V,,(T) be
the locus defined by,

B(0,w) intersects B(T,—ct + |T —T|) at a single point Py, with the
property that the spheres §B(T, —ct + [T — T|) and §B(0,w) share a
tangent plane at p .
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Then, V() C V.X(T, where;

Vo (@) = ATy[([9] = w) A (|7 =gl = —ct + [z = 7)

V(T —gl=c+ T -T) V(T -9+ [T -7 = —ct)) \T = \]

and V}(T) is generically a double cover of 6 B(0,w), and there exists
parallel planes { P, Py} C R3, such that, either;
VI(T) is bounded

when (PN 6B(0,w)) = (P, NJB(0,w)) =0, or;

V(@) blows up at an exceptional locus Z, C §B(0,w)

w

where Z, = (P, N 6B(0,w)) U (P, N §B(0,w)) is the union of 2
circles on §B(0,w). For specific, non-generic w, these circles can co-
incide, but, in the generic case, when Z, has two components, V,,(T)
basically has two asymptotic cones among Cone1(0, PLNJB(0,w)) and
Cones(0, P,N6B(0,w)) corresponding to distinct { Py, Py}, with a single
pair of infinite opposite branches along asymptotes, which are bounded
translations of the lines of the cones. The cover splits into a bounded
and unbounded component centred along the asymptotes. In a special
case of this generic behaviour, again corresponding to specific w, V()
can blow up along one component of Z, and remain bounded over the
other component. There is another special case, due to a specific link
between t and T, which can occur for non generic w, but it exhibits
similar behaviour to the generic case.

Proof. By the proof of Lemma 0.3, we have that;
Vo(T) = s TFY[([Jl = w) AT =9l = —ct + [T = T|) AT = AY]
Making the substitutions T = \y and |y| = w, we have that;
T —y|l=—ct+ |7 -7 <= [ Ng—7y|=—ct+|\y—T7|
— |N=1||[g]| = —ct+ |X\y—T|

— wA—1]=—ct+|\y—T7|
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= wA—1)2=c22+ (A\y1 — 1)+ (Aya — r9)? + (Ayz — 13)?
—2ct|\y — T
= 4 [(Ay1 — 11)? + (A\ya — 12)* + (Ay3 — 13)?]
= [P (= 12 = @2 — gy — 1) — (s — 72)? — (s — 7))
= 4 N2w? = 20Xy T+ [T = [—2 w? +w? — A2+ 2057 — |7]?)?
= N4t — (27T — 2w?)?) + A\(=82t*y . T — 2(2y . T — 2w?)
(w? — 2 — 7)) + (LI — (w7 — P22 — [72)?) = 0 (AA)
If we reverse the two = steps, we obtain the alternatives;
w2 A =12 =2+ Ay —r)? + Ay —12)2 + (A\yz — 1r3)?
+2ct| Ny — 7
and w|A — 1| =ct + |A\g — 7| or w|A — 1| = —ct — |\ — T|
which gives;
T—yl=c+|T—Tlor |T—g|+|T—T| = —ct
so that the condition (AA) defines the admissible A in the formula;
Voo (®) = 0 Fy(([7] = w) A (|7 = gl = —ct + [T —7)
V(IZ—gl=cad+Z-T) V(T -7+ [T -7 = —ct)) NT = AY]

with V,(Z) € V)(z). By the quadratic formula, we have that, if

a # 0;

A\ — —b+/—Vb%2—4dac

.Y
2a —aOI'

o R

where;

a = 4At*w? — (27 . T — 2w?)?
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b= -8ty .T — 2(2y . T — 2w?)(w* — *t* — |7]?)
e = 4CEP - (u? = 28 — 7 (QQ), ().
Let;
a(z) = 4cPt*w? — (22 — 2w?)?
b(z) = =8tz — 2(22 — 2w?)(w? — At* — |7)?)
c(z) = 42272 — (w? — A2 — [7]*)?

Then a(z) € R[z] is a polynomial of degree 2, b(z) € R|z] is a poly-
nomial of degree 1 iff;

—8c%t? — 4(w? — 2 —|F|*) # 0
iff 4|72 — 4% — dw? # 0

iff ’F| 7£ 4w2z4c2t2

iff |7| # Vw? + 22
and c(z) is a constant. We have that ¢(z) =0

HF 42272 — (w? — 22 — [F[2)2 = 0

7Grenelricadly the two roots corresponding to A must provide one of the three
alternatives;

(@). [T—y|=—ct+|T—T7|
(). [T —g|=ct+ T —T
(i13). [T —y|+|T —T| = —ct

for the corresponding Z = \y. Clearly the points on V,!}(Z) corresponding to case
(i7) are bounded, so if we obtain any infinite points, they must correspond to cases
(¢) or (4i). By Lemma 0.8, the infinite points on opposite sides of the asymptotic
line which we find below, must correspond to both cases (i) and (i¢). To obtain
cancellation, we therefore need to include the opposite time —t in the calculation,
which we can do by considering p + p~2¢, where p*(%,t) = p(T,t — s).
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2w2+202t2+/7\/(202t2+2w2)2 —4(w2—c2t2)2

iff 7] = .

|72 = w? + 22+ [ — (PR + w?)? — (w? — 2L2)2
7> = w? + 2 + | — Vw22

i |7)? = w? + A + 2wet = (w + ct)? or |[7]? = w? + 2t* — 2wet =
(w — ct)?

iff |7| = |w+ct]| or [F| = |w —ct] =w —ct

which can happen, with roots at 0 and —%, the finite point, calcu-
lated in (x) below being 0. However, we consider the generic case when
c(z) # 0, leaving further consideration of the other case to the reader.

Let;

Zy={r€6B0,w):a(y.7) =0}

Zy={z € §B(0,w) : b(y.T) =0}

As a(z) has degree 2, we have, by the quadratic formula, that;

w2+/_w2 1_4(17c2t2)

a =4t — (25. 7T —20w?)? =0 iff y.7 = 3 - (PP)

which has at most 2 real solutions, corresponding to at most 2 (pos-
sibly empty) parallel intersection circles of the sphere §B(0,w) with
parallel planes {P; 4, P2, }. We will consider the generic case with two
nonempty parallel circles, {C} 4, C2 4}, which are not points, leaving the
other cases to the reader, so that Z, = C), U Ca,, (¥). We have that
b(z) has degree at most 1, with at most 1 real solution, corresponding
to at most 1 (possibly empty) intersection circle C} of the sphere with
a plane P, parallel to P, , and P, ,. Again, we will consider the generic

8 The case when a has repeated roots, by the formula (PP) occurs when
1- 4(1;7‘;#) = 0, iff w? = 4(1 — c®t?), we can exclude this case by assuming
2 > % by moving the initial conditions sufficiently far enough in advance of ¢ and
changing coordinates. Alternatively, we can obtain at most 2 possible solutions for
w, which will account for a set of measure zero in the final integration, see footnote
refcoincides. Observe that when a has two real roots, they cannot be maxima or

minima, so a will change sign on opposite sides of the intersection circles C , and
Cs 4.
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case when Cj, is nonempty and not a point, leaving the other cases to
the reader. We have that Cj coincides with one of the circles (' 4 or
02,0, IH&:bZO,

iff (w? — 2t* —r?)(4w?® — 4y .7) = 8¢*t*y . T and (PP) holds

W/ —w?y [1— 0=t Wi —w?y 1 40=c2E2)
iff (w2—c2t2—r2) (4w?—4( \/T»ZSC%Z( v )

2 2

which can happen, in which case V,,(T does not blow up along Cj.
Again, we leave this case to the interested reader.

For i € 0B(0,w) \ Z,, we have that p(\,7,7) = 0, where p(z,7,T) €
R|[z] is a polynomial of degree 2, with coefficients in {7, 7}, having at
most 2 real roots.

Using the fact that;

la| < (42t2w? + (2wr + 2w?)?) = Oy
|b| < 8c2t2wr + 2(2wr + 2w?)(w? + A2 + r?) = O
le| < 428207 4 (w? + A2 +12)2 = Cy

where {C},C5,C3} C Rso. Denoting the possible real roots of
p(A\, 7, 7) by {2, 2}, we have;

i Cat/TITIOGE
ma$(|71‘,|72|> < [b]+] g 4ac| < 2 ; 103 204

where Cy C R~¢. Then, if;
la| = [4c?tPw? — (25 . F — 2w?)?| > € > 0
it follows;

maa(|%),2)) < 2
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In particular V,,(Z) can only blow up along the exceptional locus Z,,
(%)

In the generic case, with Cy, # 0, Ca 4 # 0, C14 # Ca4, not points,
we define the 2 asymptotic cones of V,,(T) by;

Cone(Cr,) =U

7€C1a log

Cone(Cy,) = Uyecz,a log

where [ is the line joining 0 and 5 € Cj,, for i € {1,2}.

We have that Cone(C1,) N Cone(Cy,) = 0 unless pr*(C1,) = Caa,
where pr* is the orthogonal projection defined by the perpendicular
line [ passing through 0, perpendicular to the parallel planes P, , and
Py ,, onto P,,, in which case Cone(Cy,) = Cone(Cs,). Again, we

consider this generic case, leaving the case Cone(Ci,) = Cone(Cs,)
to the reader.

We obtain no real roots, iff b> — 4ac < 0

iff [—8c2 %y .7 — 2(2y . T — 2w?)(w? — At? — |F|*))?

—4[4c*t*w? — (2y . T — 2w?)?|[4P3|T]? — (w? — 2 — |7]?)?] < 0

iff ¢(y.7) < 0, where ¢ € R[z| is a polynomial of degree at most
2, which by continuity determines an open set Y, C R3, so that
Xy = Y, N0B(0,w) is open. We can exclude X, from our calcula-
tions as the fibre is empty, and assume b> — 4ac > 0.

We obtain a repeated real root at ;—f iff;

b? — 4ac =0

iff (8%t . T — 2(2y . T — 2w?)(w? — *t* — |7]*)]?

—4[4ctt?w® — (27 .7 — 2w?)?J[ AT — (w? — A = [F*)?] = 0

9 We can also note that if ¢}, = Cy, = 0 then |a] > ¢ on §B(0,w), and

max(| 2], [22]) < %‘ = (5, where C5; € R, Vi(Z) € B(0,C5w) and V,(T) is
bounded.
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which again determines 2 intersection circles Z,., C B(0,w), parallel
to the circles Z, U Z,. Again, we consider the generic case that Z,, is
distinct from Z, U Zy, leaving the other cases to the reader, (*°).

10 1¢ Zq and Zy are distinct, with Z,., = Z,, then b?> —dac =0 and a = 0, so
b =0, so that Z, and Z;, have an intersection, which is a contradiction. Similarily,
if Z, and Z;, are distinct, with Z,., = Zp, then b? —4dac =0and b =0, so ac =0,
and ¢ = 0, the blow up behaviour along Z, being similar to the generic case. If
Zy C Zy with Zy C Zyep, then, we must have that a = b =0, and;

2.2
—dw? (w?— P2 |7)?) w24 /w? /1_%

REP—A(wi—cP2—[7%) 2

which, for fixed {¢,|7|} has at most 8 solutions for w, (*). Suppose that the
spheres 0 B(Z, —ct + [T — 7|) and 0B(0,w) share a tangent plane at p ., for some
0 < w < s, so that the line 55  passes through z. Without loss of generality,

suppose that [p; .| < [Z| Pz, = lﬁ%”"f. Assume T # T and consider the function

fz defined, for small X\ by;

fz(A) = —ct + [T+ XT — 7| — [T+ AT — Dz .|

Pzl —

=—ct+ [T+ AT -7 = |1+ N7 - “Z 7|

Pz, .|
]

—ct+ [T+NE—T| — (1 + A —

)|zl

= —ct+ [T+ AT — 7| — (1 + \)[T| + [Pz,
= —ct+[(1+Nz1—71) 2+ ((1+ N2 —12) 2+ (1 + N 23 —13)] 2 = (1+N) [Z|+ [Pr |
= —ct+ gf(A) - (1 + )‘)|T| + |T)§,r|

in coordinates T = (x1,22,23), T = (r1,re,r3), with fz(0) =
—ct+|T 7| — |f7]3§,r| =0, gz(0) = |T — 7|. Then;

4 — m@((l + Nz —r1)x1 +2((L+N)we —ro)xe + 2((1 4+ N)zg — r3)zs) — T

=y <1+ NT-7,7 > —[7]

= A+ N)EP- <77 >] - 7]

which implies that 7 € l5;. Excluding this solution, as fz is analytic, by
O-minimality, for € > 0, we can assume that fz = 0N [—¢, €] is a finite union of
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points and intervals. No interval can contain 0, as then %(0) =0, so that fz #0
on some set of the form (—e,e)\ {0}. In particularly, this implies that we can
obtain tangency of 0B(T1, —ct + |Z, — 7|) with 6B(0,p5,.;) for mobile points T,
and Pz, along the line lg; . If T =7 or T € l5, we either have [z| < [r],
in which case, it is clear we can move T along I and obtain mobile points, or
|Z|] > ||, in which case we can move T through 7 towards 0, and eventually obtain
mobile points, (xx). From (xx), the possible 0 < w < s can represent arcs with the
property that;

B(z, —ct + | —7|) intersects B(0, s)
and such that the spheres  B(T, —ct+|Z —7]|) and § B(0, w) share a tangent plane
at Pz ., see Lemma 0.4, is not discrete. It follows that the case (*) accounts for a

set of measure zero in the final parametrisation and doesn’t effect the finiteness of
the integral. When w —ct = [F|, 7 = w, T = (w — ct) £ = (1 — £L)7, (* x %), we

obtain, as above, that there exist solutions to V,,(T folrg Z| > ||, T € l55. This
corresponds to the case a(y.7) = b(y.7) = ¢(y.T) = 0, where;

a(z) = 4c?t?w? — (22 — 2w?)?

b(z) = —8c%t22 — 2(2z — 2w?) (w? — 22 — [F|?)

c(z) = 4PE2|F|? — (w? — 22 — [7|?)?

We have from (x * %) that;

- _ = ti
y.T=75.(1-%)y

so that;

a(y.7) = a(w(w - ct))

= 4c*tPw? — 2w(w — ct) — 2w?)?
=0

b(y.7) = blw(w —ct))

= —8c22w(w — ct) — 2(2w(w — ct) — 20?) (w? — 8 — [7]?)
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Assuming b? — 4ac > 0, we obtain that v, = 0 or 7, = 0 iff;
Vb2 — 4dac = b or Vb? — 4ac = —b iff (> — 4ac) = b?

iff 4ac =0

iffa=0o0rc=20

iff 4c?t?w? — (2y .7 — 2w?)? = 0 or 4t3|7|* — (w? — 22 — |F[*)? = 0

w4/ —w? 1_40=c22)
iffy.7 = TR— or 4c%t*r? — (w?* — At —r?)?2 =0
w4/ —w? 1_4(1*62%2)
iffg.7= s———— orr=|w+ctlorr=w-—ct
w2t/ —w? 1_A0=c?2)

w

iff Case 1. y.7 = 5

or Case 2. r = |w+ct|orr=w—ct

In Case 2, for a # 0, we obtain exactly 2 real roots %b and 0, uni-
formly in 7.

In Case 1, with b # 0, we have, using Newton’s expansion of (1+y)%,
for |y| < 1, that;

1
—b+b(1-9%°)2

; —b+vb2—dac __ 7,
limgso=—"5—" = lim, o 5
y_ oo (=D "ten-2) g
Lim —b b1+ +300 STty Y )|
= ___ 4ac
a—0 2a y=—"35

= 82Pw(w — ct) — 2(2w(w — ct) — 2w?) (w? — 2 — (w — ct)?)
=0
(- T) = clw(w — ct))
=4t (w — ct)? — (w? — 2?2 — (w — ct)?)?

=0
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b(— %) (=)™ 1@2n-2)1, 4ac\n
. 2 bZn 2 22n—TIpl(n— 1)1( bT)

= liMa—o S

)2n—1(2p—2)! (4c)”a”_1]

—1s 1 2c
= llma—>0§[ +Zn 2 22n Tal(n—1)]  b2n-1

and, with b # 0;

]

4dac
; —b—vb%2—dac _ 7, —b=b(1- )7
limg o=——5—% = lzma%OT
1
. —b—b(1+ 44300, e 2By
= limao 2a ‘y—fM
b(i%) (=nn"— 1(2” 2)! 4ac\n
lim 203 s Ty b2 )
- a—0 2a
— U 1 (—=1)2"=1(2n—2)! (4¢)"a" !
= Zma—)O[ ‘I' ) zn 2 22n Tol(n—1)]  b2n-1

= limao(—¢ +§) (=), (1)

Letting p; , denote the centres of the blow up circle S;,, 1 <1 < 2,
and G;,, = l5; NOB0O,w), if 7 € Sia, we let Siz, denote the great
circle passing through 7 and g, ,. Then, without loss of generality, we

have that the region;

1 This is a first order approximation for V;, (). We introduce the angle 6 below
and consider the leading term —3 which blows up as a — 0. Strictly speaking,

letting d = —1[>"° L™ (2n-2) Mc)ﬂ‘fwl], we have that;

n=2 22n—Ipl(n—1)! p2n—1

g —Hl-g - %)

If we define by, (0) = b(0)(1 — <% — 42)(9), with a(0) = 0, so that;

bnew(0) = b(0)

Do (0) = V' (0)(1 — €4 — 92)(0) + b(0) (252 — <& — <& +

e (0) = /(0) + b(0) (— 2@ _ A ()

=v(0) - ‘C(%)(%,)(O)’ —d(0)a’(0)

the proof goes through replacing the
{bnew(0),),.,,(0)}, which are all finite.

instances

# - —T)
of {b(0),b'(0)} with
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a>0NB0,w)= Uges, . (S1.5..Na > 0)

a<0NB0,w) = Si1zaNa <0)

yesl,a(

with @ < 0 situated between the intersections S, and Sz,, a > 0
situated above and below the intersections S;, and Sy, on dB(0,w),
and blow ups of opposite signs, see footnote 10, along Sigy, at ¥
and the corresponding opposite point ¥ € Siz, N S1, and points
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y//’y/// C Sl,y,a N 527(1’ (12)'

12 In this case, Cone; , and Coney, have the following asymptotic property.
Fix y € S1,4, and form the plane Q1 3,, determined by /5 ; and the tangent to the
great circle Sy 3, at 7, so that S154 C Q175.4. For a fixed ¥ € S15.4,\y, let 0
denote the angle between 5, and I, in the plane Q1 y « and let a(8) = a(¥'),

0,y
b(8) = b(y'). Considering the first order approximation —2 for Vi () along S15.q,
defining Vi, 1(Z), we have that |Z| = b(‘?g;" Let pr* be the orthogonal projection

from Q15,4 onto l5, and let pr* (@) € 5, 7 be the corresponding point, so that
pr*(T) is the nearest point to T on lg 4, w1th x = |T — pr*(T)| and R = |pr*(z)|.
By elementary trigonometry, assuming 6 > 0, we have that;

b(0)wsin(0 b(0)wcos(6
o= | = MG R = | = M, § = tan(0) ()

As the circles S1, and S, are distinct and non-empty, we can factor a as
(.7 —a)(y.T — B), where Sy, is defined by (y.7 = a) NdB(0,w), Sa,, is defined
by (7.7 = 8) NdB(0,w). Rotating coordinates so that ¥ is situated at (w,0,0), ¥
at (wcos(0),wsin(0),0), we have that;

wr; —a =10

where T = (r1, 79, 73), and, without loss of generality, we can assume that ro # 0,.
This follows as if we rotate g to (w,0,0), ¥ to (wcos(8), wsin(d),0), with ro = 0,
rotate ¥ to (0,w,0) and ¥ to (0,wcos(8), wsin(d)) with r3 = 0, and rotate 7 to
(0,0,w) and 7' to (wsin(f),0,wcos(#)) with r; = 0, then 7 € I5 5, which we can ex-
clude, as it accounts for a set of measure zero in the final integration. It follows that;

a(0) = (weos(0)ry + wsin(0)ry — a)y(0) = (W + wsin(0)ry — a)y(0)

= (a(cos(0) — 1) + wsin(0)ra)y(0) (xx)

with v(0) # 0, so that, from (*),(*x);

cos(0) = | — Sge]

= | = sy ll[(a(cos(8) — 1) + wsin(0)r2)(0)]] (L)

so that, using the power series expansions cos(#) = 1+0(6?), sin(0) = 0+0(63);
1+0(0% = (—(aO(GQ) + wra6 + O(63)y(6)

and, rearranging;

0 =T |50

(6)) (D)

so 0 = O(%) ( * x)
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so that, from (x), (x * *);

)

x = Rtan(f) = O(1)

tan(0) = O(

==

and, as |T|cos(f) = R = |pr*(Z)|, we have that;
z] = [pr*(@)] = iy — R

= R(1+ % +0(6%) -

= 0(6?)

= O(z2)

From (D);

0 = | 2| (5t + 0(0)) (D)
= s 11+ 0(0))
so that;
0(1+0(0)™" = 0(1+ 0(0)) = | |

=] — 0] < [0(1+ 0(9) — 0] = 0(6%) = O(%)

~v(0)Rra

so that;

1= | — Bl < O(32)0(§) = O(72)O(R?) = O(1)

We have that, using (L);

_ _ wb(0)sin(6)
= Rtan(@) - ‘ [(a(cos(0)— 1)+wszn(0)r2)'y(0)]|

and using L’Hopital’s rule;

limg_o(wb(0)sin(0))’ |
limg_o[(a(cos(0)—1)+wsin(0)re)v(0)]

limg_or = | —

_ | . limg o (wb’ (0)sin(0)+wb(0)cos()) |
Timg ol(—asin(@) T waos (0)r2)71 () +((a(cos(9)— 1) +wsin(@)r2))7 (0]

wb(0) ‘
wra7(0)

= | o 7”27(0)|

so that the line formed by the translation of [5 - by a perpendicular distance of

0,y

| — r2,y(0)| in the plane Q1 y,, is actually an asymptote. Moreover, as x is analytic



42 TRISTRAM DE PIRO

Ify €S, is fixed, with corresponding {5174, @154}, then as b # 0
along C ,, we can assume that for small enough [0] < ¢, see footnote
12, |b(€)| > €, uniformly in § € S} ,, so that |ﬁ5)| < %, and the root
found in (%) has a maximum value M, varying |0] < 6 and § € S},.

For the root T(#) = bieg + g0, defined by (#x), we can assume that

in 0, 2 — ;2595 = 0(0) = O().
We also have, using (L), and L’Hopital’s rule twice, that;

|limg—o(— #ﬁ,go) R)|

. b(0) b(0)wcos(6
= |lzm0‘>0|(_ 7"20'\/(0) | + | [oz(cos(ﬁ)—(1§+wsi(n20)r2]'y(0) D|

— lim ‘ —b(0)y(0)[a(cos(8)— 1)+wszn(0)r2]+b(0)wr2c09(9)9'y(0)|

- 6—0 r27(0)7(0)0[a(cos(0)—1)+wsin(0)rs]

‘ —b(0)7'(8)[a(cos(0) —1)+wsin(8)r2]—b(0)y(8) [—asin(§)+wcos(8)r2]+b" (0)wray(0)cos(8)0+b(0) wray(0)[cos(8) —Osin ()] |
Y(0)v"(0)0[a(cos(0)—1)+wsin(0)rz]+~v(0)v(0)[a(cos(0)—1)+wsin(0)re —absin(0)+wcos(0)6rs]

= limg_o
= limg 0| Fig) |

where;

E(0) = =b(0)7"(0)[(cos(0) — 1) + wsin()ra] — 26(0)y'(0)[—asin(0)
+weos(0)ra] — b(0)y(8)[—acos(8) — wsin(8)ry] + b (0)wryy(0)8cos(6)

20 (0)wryy(0)[cos(0) — Osin(B)] + b(0)wray(0)[—2sin(8) — Ocos(6)]

F(0) = v(0)y"(0)8l(cos(0) — 1) + wsin(0)ra] + v(0)y'(6)[ex(cos(0) — 1)
Fwsin(0)r2] +v(0)y (0)8]—asin(8) + weos(8)rs] +~v(0)y (8)[a(cos(d) — 1)
Fwsin(0)r2 — afsin(8) + weos()0rs] + v(0)v(8)[~2asin(9) + 2wcos(8)r

—afcos(0) — wsin(6)6rs]

so that;
. —2b(0)~' (0)wra+b(0)y(0)a 20" (0)wr 0
|lzm9—>0(71«2b.9(»(y)()0) R)| =| (0)7'(0) 2457((0));/1(1}22 +2b" (0)wray( )|
It follows, as Tz_ebw(%) — R is analytic in 6, that;
—b —2b(0)7’ (0)wra+b(0)~y(0)a+2b" (0)wra~y (0
||T29£(()()))‘ —R|—| (0)7'(0) 242-W((0))'2yl(ur)2+ (0)wrary( )‘ 0(9) = O(%)
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for sufficiently small §, |Z| > Mw, and we can unambigiously define

f((g)opp = f(_e)a (13)'
Returning to the case notation above, we have that, Case 3, a = b =

: 242 2N . 832tyT
0iff (1 —c** —7r%) = (o7

242
w2+/7w2 174(171: t4)
802t2( w? )

2
—242
w2+/_w2\/1_4(1w6 <)
2

iff (1—c*?—1r?) =

dw2—4(

)

corresponding to specific values of w, a situation considered in the
footnote above. We have that V,,(Z) is bounded over one of the compo-
nents of Z, and exhibits a blow up behaviour over the other component.

In Case 1, not Case 3, as we have seen in the above footnotes, we
obtain two components, with one component having a pair of infinite
opposite branches parallel to the lines in the asymptotic cones, and a
bounded component corresponding to ¢ over the singular locus Z,.

In Case 2, we again, by a similar calculation to (*), obtain two com-
ponents, with one component having a pair of infinite opposite branches
parallel to the lines in the asymptotic cones, and a bounded component
corresponding to the root 0.

0

Lemma 0.5. Cancellation along asymptotes

We have that, along the line lgy o, the integrals;

) 7 25N f— .\ (r—r!
(4) 47r150 ey it f5B(F’7—ct+\?—F’I)(t N ‘_cl)(a_tg)(y’ 0)]dS () él?—?’lg

2 1T=7"1\2
42 (t —)

?—ngp 2 _ _\(r1 —r’l’opp)
(—t— oy (20 (57, 0))dS () ez

1 1
T dmeo [ I™—Topp| f OB(T ) ct+T—T 0 |) c =7, |2
47T02(—t—%)2 opp? opp opp

13 By the calculation in footnote 12, we have that {T, T, } vary as O(3) with
the angle 6. Moreover, by Lemma 0.8, for sufficiently small 6, if T corresponds to
—ct, then Ty, corresponds to ct. By the definition of V,}(Z), B(%, —ct + [T — )
and B(Topp, ct + [Topp — T) pass through {y',y"} C B(0,w), touching 6B(0,w),
with [§ — 7’| = 2w|f| = O(%) and centred on ”oppposite” sides of B(0,w). As the
boundaries 0 B(T, —ct + |T — 7) and dB(Topp, —ct + |Topp — T) limit to the tangent
planes of 7’ and i for sufficiently large {Z, T, } and the points 7" and 7" approach
each other as we increase R, this will be enough to obtain cancellation in the
indefinite integral, following the method above. Moreover, by the calculation in
footnote 12, we can assume that  and T,p, in the limit as § — 0 approach the
same line consisting of a bounded translate of the line /5 ; in the plane Q17,4
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%(7,0))ldS (7) 2=

(12) m[4wcz(t_\?—?'| 2 féB(F’,—ct+|?—F’|)(8_ 7|2

S

_ — (r=r opp)
(7, 0)IdS(Y) =2

1
+ e | ol fine ct-i-\?—?i,ppb(

dme?(—t—

— r1—r})
(Zl’l) 4ﬂ_1€0 [m f&B(F/7fct+|77F/|) D(a_f)(y7 0) ( )]dS< )c|r 7|2

OPP

Q

1 [ 1
471'60 47r02( t— |7— Topp‘)z

are O(g5), with R = |F|

Proof. Using the notation in Lemma 0.4, we consider the restriction of
Vs(T) to a cover of Sy 54, for g € S1,. For 77(0) € V,y(T)ls, ., let 7’ be
the nearest point to 7 on the asymptote l5; o, Where l55 o, is a shift
of [z by the perpendicular distance ¢ = |- (0) | in the plane S} ,.
Then, by the result of Lemma 0.4, we have, for any 0 < e <1, that;

[7(0) = 7(0)] < e=O(5)

for sufficiently small 6, with |[7(0) — 73| = R and [vz| = |cz| and
7(6)| — Ipr (P (6)] < &, where [pr (/)] = [7(6) — 5] = R, so
that, for sufficiently small 6(R) or large R(6);

R-1<R-EZ<"0)|<R+L <R+1

R—2<R—-1—-e<[F@))]<R+14+e<R+2

We also have that, by the result of Lemma 0.4, that, for sufficiently
small §(R), 0 < € < 1;

7(0)] = | Gragay) | = [P (0)] = |pr* (7 (0)] + lpr* (7 (0))] = | (s )

<%+€/+€g
<26 + €5

where e = |20 G R )

and similarly;

_ ri—7r opp)
f§B Topp CtHT—T0,p1) D(%)(y70)'(y opp)]ds( )CﬁaT—lP
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— —b(0
7 (0)opp| — (=52 255)
— — — b(0
= [7"(0)] — 17" (7 (0)ap)| + [pr* (7" (0)opp) | — | (7225)|

<E+eé+e

<2 + ¢

so that;

[P (0)] = [P (O)apsl = 7" (0)] = | Gty )| + | Gty )| = [P (6o
< 4e + 2¢5

= O(3) +2¢

and;

[T ()= (O)app| = ([T (O)[=[T"(O))+(IT" ()= [7"(8)opp ) +-(I7" (0) o | —
[7'(0)opl)

< (I7(0) =) + ([T @) = 7" (O)opp|) + (7" (@)opp — T'(0)op )
< 4e' + 265 + 2¢

= O(5) +2¢

In particularly, as, by Pythagoras’ Theorem;

7O + leg|* = lpr* (7 (0))1*

[7'(@)oppl” + legl® = [pr™ (7' (0) opp)|*

we have;

= (Ipr* (@O — legl*)2 = (1pr* (7 (O)op) | — leg*)?

= [7(O)] = 17(0) ops |
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< 4€' + 2e + 2¢5

so that, using Newton’s expansion;

[ (P O)(1 = prele)? — [pr (7 (0)op)| (1 — o —2)?
< 4e' + 2e + 2¢5

[pr* (7 (0))] — pr* (7' (0)opp)| < A€’ + 26 + O(3) + 2¢5

and we can assume that for sufficiently small 0;

pr(F(0)) = (7 (O)o) + €+ Ty

with |e¢] < 4€' + 3¢, |wy| = 2€5, and;

~7(8) = —(T7+ pr° (7 (9))

= —vg —pr*(r'(0))

= Uy + pr*(7(0) opp) — € — Wy

=T(0)opp — 205 — € — Wy

- F/(‘9)01017 - (265 + wﬂ) + O(%)

> 7(6)opp — (205 + Wy)

For the asymptote I o, With 7 € lg5 o, [T'| = R, sufficiently large,
there exists a unique 7’ € V,,(7), with pr*(7") = 7, where pr! is the

orthogonal projection onto lgy o, in the plane Q1 g,. If [pr*(7")| = S,
then |7 — 7| = O(%), ™ — pr*(7")| = O(%), so that;
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SB(F,—ct+|r—7|)NB(0,s) = 0B, —ct+[F =)+ (7 —1r")) N
B(0, s)

~ (6B, —ct+|F —=7"]) + (7 — ")) N B(0, s)

with a radial adjustment of at most [7'—7"|, and § B(7", —ct+ |7 —7"|)
passes through 7" with |7 — 7] = wd = O(z) = O(%). It follows

R

that 0B(7', —ct + |F — 7'|) passes through ¥ with 7" — _| O(%),
7 — 7| = O(3). Similarly, we have that for the pair {7, 70 };

T = (205 +Wy) — 7 + O(3)

= (27 +) — 7+ O(3)

where Z; = (205 + wy), so that |7, —7, | = O(%) = O(%). More-
over;
_(SB( 0pp7€t+ |T opp’)ﬂB<0 S) (5B( opp?Ct+ |7’ opp|)+(F:)pp_
™ opp)) N B(0, 5)

<5B<_,o/pp7 ct + ’T - Topp’) + (F/opp OPP)) N B(O S)

with a radial adjustment of at most |7/, —7, .|, and d B(T, Opp, ct+|r—
o) passes through 7 with |7 —7| = wf = O(5) = O(%). It fol-
lows that 6 B(7,,,, ct+ |7 —T passes through 7, , with |y0pp

O(%), [ = Toppl = O(5).

oppl) _yoppl =

We have that;
(7). Using the facts that ‘a lo] < M on B(0, s) the surface measure

of dB(T', —ct+|T—7'|)N B(0, s) is at most 27s? = 2z;— 7' +0(5),
we have, for sufficiently large R = ||, that;

1 1 [F=7] \ ( 9* (ri—ry)
|47reo [47r02(t—|77F,|)2 féB(?’,—ct—HF—?’D(t T ¢ )(ﬁ)( )]dS( )c\rl 7"1|2
. i,
e o v (= ) (20)(,0)1dS (7) )

dme2(—t— T Toprl )2
= |t [ B (22)(5,0)dS ()
— l4meg 4ﬂ.c2(t_\?—j/|)c\F—?'\2 SB(T,—ct+|7—7'|) \ Ot2

OPP

ct+|7— ropp|)
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1 1 (r1=ri, 0?
+m[4ﬂcg(_t_ \?*?f)pp\ clr— szjf IJB(T ct+|F—7, \)<8_p)( )]dS( )|

r1—"r (7“1 7 opp
= &=t <f_¢>+ : 1 ) [ p —evn ) (58) @, 0)]dS (@)

Ameo a2 (=) T =T T ATCO T Tomely €T —Top |7
c

(T Tl opp
+[ ! = = faB ct+\?—?;pp|)(gt2)< 0)dS(y)

4men 471‘02(7257‘?“77“017‘17‘) C|T‘ roppl

féBr ,—ct+|T— ”|)(gt2)(y7 )dS( ))|

opp?

Oppa

|7—

[V— _
.y [m—ra)((—t " Toppl Toppl® =t E=Thm2y | =)= ,,0) ]
T 116m2ege3 T [T—Toppl| _ A N
° (= 2 (o= e 2 (b= 7T 2

20)(7,0)]dS(7) + [ I

f(SB(F’,—ct+|F—F’|)(8t2 47reo4 CQ(_t_\T*Topp\) c|r— ropp|2

féB ct+|?—?£,pp|)(%§)< )dS f(SBr ,—ct+[F—7 \)<gt2>(y’ )dS( ))‘

[7+7 —2p|

0pp7

[m—ra)((—t—ic )77 22+ O( L) 12— (t— =Ly 7 2) 2r1 2251 +0(%)
= T4+T Z T+7 —2Z— L
(t_@)r_fqz(_t_w” 47 _sz_}_o(ﬁ)‘ (- t_w

92 1 (ri4r1—225,1+0(%))
féB(F’,—ct+|F—F’|)(8_t§)( )]dS( ) [EMCQ(%?\?+?'—2zg+0(%)| c|r+r1—2zZ+O( 1)2\2]

C )
o2 92
faB ct+|F—?gpp|)(8t§)< 0)dS(y) f(SBr —ct+|7— */\)(atg)( 0)dS(y))|
M2 ‘(ﬁ,ri)((,t,wgww” T 254+ O( %) 12— (t— =T L) - r|2)|

- | 1672¢egc3

0pp7

T T O gz o)
87TEQCS| |7+7/72j,+10_<2f;’1+0(%) 47r160 \H:’*?f*w(i)\ (Z\lfjrﬁjzyigoiﬁ )|
t— B [F T 22540 () 2 dre? (—t———F—H) 7+0la
|f§B(F;pp,ct+\?—?;pp|)(gtg)( 0)dS@) = [sp —ctrirr M%)@, 0)dS ()|
A 7reoc3|7" Ela 27r6004|r'|3 + e o I?+F’7QE§+O(%1)\)”F+7 o)
| Jstrtyy ettty (578) @ VIS @)= fip 17y (55) @ 0)S @)
(P)
where, we follow the method in (i7) below, noting the O(|F'|*) term
cancels in the first long term to obtain O(|7(~)\()|2|((\37)~ * — O(%,lg).

Change coordinates, so that the azimuth angle 6 of the sphere 0 B(7, —ct+
|7 — 7|) is centred on the line passing through {7,7'}, giving coordi-
nates;

)P+ =22+ 0(5)I?
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7 + sin(0)cos(p)T + sin(0)sin(p)y + cos(0)(y —7)
O<o<m-m1<¢<m)

for a choice of orthogonal vectors {Z, 7,7 — 7} with modulus —ct +
|7—7"|. Similarly, choose the azimuth angle 6,,, of the sphere 6B(T,,,, ct+
7 —7,,,|) is centred on the line passing through {77 }, giving co-
ordinates;

opp’ yOPP

?,)"‘ 811 Oopp) COS(Popp) Topp + Sin(eopp)Sin(¢0pp)yopp + c05(Oopp) (yi)pp -
F/
opp

(0 < eopp ™, =T S ¢opp S 7T)

for a choice of orthogonal vectors {Topp, Yopps Yopp — Topp) With modu-
lus ct + |7 —7,,|. We have, for points {7’,q,,,} of intersection between

B(0, s) and 6 B(7', —ct+|r—7'|), B(0,s) and 6 B(7,, ,ct+|F—7. |) that;

opp? opp ’ )

Oopp(Topp) == SI(Oopp(Topp)) < m (TT)

Let {m,m';m/ } be perpendicular lines to the asymptotic line I

containing {7 ,ropip} with centre z+ O(%), passing through the points
WY, ¥, with p = mnl, p = m' Nl p, = m,, NIl Let
{P,P', P, } be planes passing through {7,7,7,,,}, perpendlcular to
the lines formed by translatlng l by the vectors {y — 7' Topp — Popp)
respectively. Lek 0 = [7 7 o = [7 = T vy = [Ty — Pl

=7 =7, kpp = [Topp = Dopps then by elementary trigonometry, the
angles {c/,al, } between the lines {,l; 7} and {l, 1 } are given

by;

opp Yopp T opp

!

|

@\
&=
il

o ~tan(o) =5 =5

x
=1

']

3

a,,, = tan(a;

_ v’opp _ ‘yopp poppl — O(

OPP ) kypp 7

opp—Popp }%) (LM)

We have, for vectors {u,v,w}, that;
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so that;
7 =P =" =7z — P — 7

|F;pp - ]_O:Jpp‘ > ’F:)pp - z§| - ’]_jgpp - z§|

=7 =z + O(%)| — [Pl — 74l
and, moreover;

7| = 2] <17 = Z5l = [T, — Z+ O(R)] < 7] + |7

so that;

7 =% = O(R), [Ty, — %] = O()

opp

where R = ||, and, using (LM), a = O(%), o/ = O(%). Then, it

is clear that that the maximal distance between points ¢’ on the arc
dB(T',—ct + |7 — 7|) N B(0,s) and the orthogonal projections pr?(q’)
onto the plane P’ is at most /s = O(%), and similarly, the maximal
distance between points @, on the arc 6 B(7, = ct+|r -7, [)NB(0, s)

and the orthogonal projections pr2(§gpp) onto the plane P, is at most

o s = O(%). Similarly, as the orthogonal distances between P’ and
opp R

P is [7 =7, = O(%), we can, for sufficiently large R, choose

{%, 7, Topp, Yoppy compatibly, such that, uniformly;
17— Tyl = O(5) = €(R)

for {7,q,,,} defined by coordinates 6 = 6, ¢ = Py, with 0 < 6 <
ma$(9maxa Hmaa:,opp)a Where;

Omas = mazo<p<2:8(7) = O(%)
for ¢ in B(0,s) NdB(T', —ct+ [T —7'|), with coordinates {6, ¢}, and;

—/ 1
Omaz,opp = MAT0<3<2r00pp(Topp) = O(5

for g, in B(0, s)NdB( ct+|r7—7, |), with coordinates {Oopp, opp }

=/
TOPP’ opp

It follows that, for sufficiently large R, using the surface measure
dS = r?sin(f), the fact (T'T) and r%(1 — cos(1)) = O(1), and footnote
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2, for sufficiently large 7;

| féB o

max(Omaz,Omaz,opp .
< 2¢(R)|V(((Z8)0) | po.0) |27 (ct+[F—T,, )% et ' sin(6)dé

2

55)(7.0)dS ()]

2
féB (7, —ct+|F—7" |)(8t2

i, ()T 0)dS(3)

= 2¢(R)|V (((38)0)| 5@.5) |27 (ct+[F—T,, )2 (1—cos(maz (Brmaz, Omaz,opp)))

where {C, D} C R~o.

It follows from (P), for sufficiently large r(e), following the method
of (i1), that;

1 [T=7|\/0%p (ri—r})
|47r€0[47r02(t—@)2 f5B(7’,—ct+|F—7’|)(t _ Tc >(8t2)< )]dS( )C‘TI r’1|2
c
L 1 [T—Topply 92 (ri—=r1 opp)
Tral, 2(47%)2 S5 et tiz—r,h) (=) (5#) (7, 0)]dS (0) g2z |
M I .
S Foden ¥ s ¥ s o R

where By € R+g.

(71). Using the facts that |6 lo| < M on B(0, s) the surface measure
of sB(T', —ct+|F—7'|)N B(0, s) is at most 2ms?, = 2z;—7'+0(5),
we have, for sufficiently large R = |7, that;

1 9 ri—r)
|47reo [W féBr —ct+[F— 7"|)(5§( 0))1dS(y )cj—fﬁz

OPP

1 1 op (Tl & omﬂ

R = dsS —

4meq [471'02( — |[7— TOPP‘)Q f(sB opp’6t+‘r TOpp')(a ( ))] ( ) C / |

1 27 M s> 1 27t M s>

_ =l _ =__=

ATe0C g2 (t— [T c"" ‘)2|7’—7‘/| 4mege e (—t— 7 Tcopp| V2[F—7,
_ Ms? + Ms?

8meeg (ct—|[T—7'|)2|[F—7'| 8meeg (—ct—|T14+7])2|[F1+7|
— Ms? 4 Ms?

8meeg |[T—T \3“, ,,‘+1|2 8meeo|T1+713|( ,7c’i,‘71)|2

|71+7
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52

Ms? +

— Admceo[T—7|3 87rceg|r1+'r’|3
3Ms?

— 8meeo|[T'|3

_ ks
G

where 71 =T — 225 + O(3), E2 € Ro.
(7i7). We have that;
|ty Joer sy DG @:0) - (7 = 7)ldS (@) e
+ T Ty Jopetortir-rp) D@ 0070, )AS( ) e
= | [ e ST o —curiory DO @ 0)-(Z@)AS (7)
+ﬁ[4m2( t @)Q( ct+ |7 = Top de(’/‘opp et t[F—7, |)D(a_p)(y,0)
(opp (7)) (7) ez

: (_Ctj—_'i_ﬂ, — |féB(F’,—ct—HF—F’DD(a_p)(ya(D Z(y)dS ()|

— 4”50047rc2(t [r—7 ‘)2|r 7|

1 (Ct+|7” Topp) - = —
4dmegc 47r02(—t—|T Topp\p)p 27—t | ‘ f(SB(ropp et T—T 0 D(B_p)(y’ 0)-Zopp(y)d5(y)\
(NN)
Letting zg = %, so that |Zg| = 1, R the surface measure of

dB(T, —ct+|r —7|) N B(0, s), using Lemma 0.2, following the method
of (i), we have that, for sufficiently large R;

| S e p—ry P50 (@:0) - 2@)dS (@)

= | s —etrirsy DG @ 0-C@=2)AS @)+ [0 e D(5) 3, 0)-
2dS5(7)|

< Jsn —arpry PG @ 0)0E@)~20)dS DI+ fspe —arpr) PG @, 0)]:

ZodS(Y)|
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< Rmatyepm s ‘D<a_p)( 0)[|z(@)—Z|+| féB(?’,fctJr\?f?/D D(a_p)< 0)dS(¥)-

e
< RMmazyep,0/27) = %l + 15| [sp _osirry D)@ 0)dS @)
sRmﬂa—awwmmxmnwmmﬂ+|&mﬂ%HWWDDG¥x 0)dS(y)

— [ D)@, 0)aS@)| + | [ D(%) (7. 0)dS(7)]
=ﬁRM<1—cos<em>>%+\fwﬁfﬁdﬂwbz}(a—p>< 0)dS(H)— [ D(%)(7,0)dS(®)|

< RM Flp0z + O(%)

2sH w
S —ct+|T—7| + |

= e TR

—ct+|r—T
where {F, G, W, H, A}, B} C R Similarly, using P, there exist
{Ay, B} C R0, such that

|f53 ot [F—T, ) D(%)(@ 0).Z(y)dS([y)| < ct+|T 7

— A + Bo
ctH T+ —225+0()| | 2257 1+0(3)

OPP ’ opp | 11 +Fopp

so that, from (NN), following the method of (i7)
ri—r})
|47r60[47rc2(t 1|T ! féB (7 ,—ct+|7—7]) D<a_p)(y70) ( )]dS( )071 =ip)
(r1—7] opp)
Thop: ) D(a_p)(y7 0) ( opp)]ds( )m‘

: (et 7 (= L |+ R |)
p— —/ _"_,r,/

1 1
+47r€0[47r02( P Topp\)Q f(SB ctHF—T g

— 4megc 47T62(t—‘7‘7r/‘)2|F—?/| —ct+|T—T
+ 1 (Ct+|T Topp) Ao + Bo )
dmeoc , 2 (—t— [7— ropp\)gr 7,pp‘ T+ —225+0( %) [14+2z5—7 +O(%)|
_ 1 1
T 1672epc? |(t— I?*FI)HT ,,‘/‘( ct+|'r 7| + |1+F’|)
c
1 1 As Bo
+167|'26()C2 ‘_t_|?_7,opp|”?_ngp|(Ct-‘rlF-‘r?/—QEy-f—o(%)‘ + \1+2Eg—F’+O(§)|)
c

L@
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where By € Rq (i), (id), (iii))
O

Definition 0.6. For the blow up circles {S1.4, 52,4}, we define the cor-
responding shifted asymptotic cones {SCone(S1 ), SCone(S24)} by;

SCone(S1,4) = Uyesm l5.g,5h

SCone(Ss,0) = Uyesg,a log.sh

Fiz base points y, , € S1.q and Ysa € Sa.4, the circles having centres
{C1.0,Co.a} with radii {ry 4,724} and points on the circle {Z1 4, Z2,4}, such
that Iz, , 5, and Iz, , =, are perpendicular for 1 < i < 2 then we can
define parameterisations fy : [0,27) — S14, P2 : [0,27) — Sa4, by;

61(7) = Ei,a + ri,a(gi,a - Ei’a>COS(’}/) + Ti@(zi,a - Ei,a)*Sin('y)
We define the maps {6,602}, 6; : R x (0,2m) — SCone(S;,), 1 <
1 <2, by;

—b(7)
r27(Y)

where, fory € S;q, Uy has modulus | | with Uy € S15.4 perpen-

dicular to Yy € 5.

Lemma 0.7. Cancellation along the shifted asymptotic cone and V,,(T)

Proof. Using the notation above, we have that, for i € {1, 2}

(4). 0:(0,7) = Up,(y)
(13). 0:(ry7)opp = Oi(—r,y) + O(%), for sufficiently large r > 0, (*).

14 As, by the above, if 7 = 6;(r,7), then;

/

Topp = —(7' = Tp,() + Wa, () + p,(7) + O(F);
= T+ (20p,(y) +Wp, () + O(3)
so that |7 — Zg, ()| = |Thpp — Z, ()| + O(%)

where Zg, () = 5(20,(v) + Wg, (1)) and Zg, (1) € lg 5, (+).sh-



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 7: THE HYPERBOLIC METHOT5

(7i1). There exist R; C R~ with 6; diffeomorphisms outside [—R;, R;] ¥
0, 27), with the partial derivatives uniformly bounded.

(iv). Im(b1|r\[— Ry, R x[0,27) NV I(O2| R\ = Ro, Ro)x [0,27)) = O

(v). For ry > ry > Ry, |0i(ra2,y) — 0:(r1,7)] = r9 — r1, and for
re <11 < =Ry, 0i(r2,7) = Oi(r1,7)| =11 — 12

It follows from (ii7), (v) that, for 1 <4 < 2, the pullbacks;

Ol (- Ry a1 x 0.2 (ALED] sC0ne(s, 1) = 152 X 8011617“65’7 f(r,y)drdy

has the property that f(r,7) has order O(r), uniformly in v and
f(r,y) = f(=r,7), for r € R-g. For R € R+g, with R > R;, we can
define the regions Sg; C R X [a, 3), by;

SR,i = {(7"/77) : Rz S |T/| S Raf}/ € [aaﬁ)}

with corresponding regions 6;(Sg;) C SCone(S;,)

Then, by the calculation above, using fact (i7), Lemma 0.5 and the
mean value theorem, letting;

H(7)

ENGED N

dmeg |T—T|

. —tr
H (T,) = (477160 p(|rr r’\) )1
where by ¢, we mean t — il il

have that, for r > R;;

and by —t, we mean —t — , We

0T H T (r, ) + 01 H ™ (=1, 7))

= [H*(7) + H™(7,,, + O(;))]

opp

< H*(F) + H (Top)| + [H™ (7, + O(1) — H™(7,,)]

< &+ H (7, +0(;)) = H (T,,)|

=5 +|DH (7). 0(})|
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<5+ 2V HE)E) (YY)

O(;)

where |7} — 7/ -

0pp| =
We have that;
|V (HO) ()| < V3mazi<i<s (5,

and;

- 2 - - ot

Blrlr = s l(55 (0, ) + Do g YTyt
M] ,
i

so that, using the fact that |p| < M for some M € R-o;

9%p /-,
|98 (7 )L ()

c 92t M o —tr)
|B_7"; F,1| — [ e + dmeo[T—7|2 + 27reo|r 7 \le

We have that p obeys the wave equation 7%(p) + C%% = 0, de-

termined by the initial conditions {py, (%f)o}, so that p obeys the
same Wave equation determined by the initial conditions {(gt e va

(po)}, 2 at2 £ obeys the wave equatlon determined by the initial conditions
{= 2% (po), —c* 2 (apo)}, g L <1 <3, obeys the wave equation

determined by the initial conditions { gtgf, , —c? 2 (‘Z’; )}

Using Kirchoft’s formula, it follows that there exist { Dy;, F1;, Do, Eo, D3, E5} C
R0, for 1 <i < 3, such that, for sufficiently large |7|;

| | Dy Ei;
o P —tr = T S
c
3%p Do Eo
|8t2 P < ]
c
. D3 Es
Pl —t, < ——F=71 < 7
c

so that, for sufficiently large |7|, there exists {G, H, K;} C R+, for
1< <3;

57l < a1 (B + 2+ e + 20l

dmeo[7—7| \ 7| 7| [7—7| 7
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Bt + B 8+ B

K;

= 72 |F’1

712

and, for some {X,Y, Z} C R-o;

|V (H)(F)| < P

R
_ VBmazi<i<sKi
T Loz
‘Ti)pp'i_o(;)lz

< X

|F;pp|2

< 25

7|

<Z

so that, from (YY)
|07 H T (r,7) + 07 H ™ (=7, 7)]
Smt+In

= CHZ (3)

We also have;

|f(r, )l < Dr

(01 H* (r,y) + 07 H (=7, 7)) f(r,7)] < 522
where {D, F'} C R, F'= EZ, so that;

limR 00, R> R f@i(sm)(H+ + H™)(7)dr

— limsoo o, Jsy (G + HO) () )y

= limRaoo,R>Ri f[0727r) [f}i QTH+<T7 ’Y)f(ra V)dr—i_f__}fl QIH_ (7”, ’Y)f(ﬁ V)dr] d’)/
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= Ui g o055 1, S om U OVH (1) F (s y)dret [ 03 H (=1, ) f (=, 7)dr]dy
= UM R oo 1> Ry Jigom S (OTHT (r,7) + 6 H (=1,7)) f(r,y)drdy
= Joom J, ;;fwa*(n v) + 03 H= (=r,9)) f(r,7)drdy

where, letting G(y fR (OH*(r,y) + 0H (—=1,7)) f(r,v)dr;

Gl <[5 C;Ed = [P

so that;

LM psoo,~> R Jig 2m) S O H (r,9)+07 H (=1,7)) f(r, y)drdy = Joy G
exists and;

1 g oo, ms R, fig.m S (OFH (r, )40 H (=r,7)) f(r,y)drdry| < S22
It follows;

limp—soo R>R, fe )(HJr + H™)(T)dr

exists, and;

i s s, fy 5, (HT + HO)(F)dr| < S22

a

as well. (UU)
Idea for V,,(Z), using calculation () above;

With the same notation as above, for sufficiently large R, letting
7 € V(x), with 7 = pr*(7"), with pr the orthogonal projection of
51 7.0 onto the asymptotic line l67y78h, opp the opposite point to 7 7 and

Topp the nearest point to 7, on Vi, (T)NS1 4. Let dVy be the restriction
of Lebesgue measure to V,,(T) N S13,4, dZy the restriction of Lebesgue
measure to lg; ., = SConey , NSy 7.4

Using the notation above, we have that;
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—b(0
Hemé(()))‘ —R| = €y + O(%)

™ =7+0(3)

_ Ry . —
T/ = ?y + 7
so that;

—b(0 €7 — _
— (O 2 O(L)T+Ty+ O(3)

—b(0 €T\ — —
= (G @)+ Ty + O(L)

—b(0 €7\ — _
- (07"2«/%0;11; + Ey)y + v+ 5(0)

where 6(0) = O(%) is analytic in 6, so that [§'(F)] < N, for some

N € R+p. It follows that;

dF// o b(0)7
g €2r2'y(g)w + 5,(0)

It follows that, using Newton’s expansion;

! b(0)y /
‘ ! d9(9) | 9§r27(0)w +4 (6)‘

il - * Y *
e () o (e ) Fer (61(9))]

b(0)y /
‘ 927‘2,\{(0)1” +5 (0)|

|57ty 0P8 (0))

b(0)y
| ryator +6°9' )
| s +62 (T (57(6)))|
2 2,25/ 2
2737(0)2w?]8’(0)12 | L
S e
r37(0)2w? oy +pr* (87(0))12 )3
b(0)2[7]2

(1+62

=1+ 0(6?)
=1+ O(%) (59)
so that;

dVy(T") = dZz(T") + O(5z ) dZ5(T")
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and, similarly;

dVy(T ) = dZy(7,,) + O3z )dZy(T,,)

opp Topp) opp
By the above, we have that;
(@). ™' =7 + O(%)
(id). T, =Ty + O(%)
(iii). HY(F") = HM(F) + O()
(). H-(7 ) = H(7,,,) + O(35)
(v). dV5(7") = dZy(') + O(5z)dZ5(T")

(vi). dVy(T) ) = dZy(T.

opp)

(vii). H*(7') + H(7,,) = O(gs)
(viii). dZy(7) = dZy(F, ) = O(R)

Then, using (i) — (viid);
H ( ”)dV( ”)—I—H (—// )dV (—I/ )

opp opp

= [H*(7") + O()]dV5(") + [H™ (7,,,) + O(3)ldV5(7s,,)

= [H*(7)+0 (7 )[dZ5(7")+O(52)dZ (F) |+ [H ™ (7)) + O (35)][dZ5(7,,)
+0(52)dZ (7))
= H*(7")dZy(7')+H ™ (7,,)dZy(7,,)+H* (7)O(52) O(R)+H ™ (7,)O(7)O(R)

+0(35)O(R) + O(55)0(3)O(R) + O(35)O(R) + O(55)O () O(R)

= H*(7)dZy(7) + H(7),,)dZ5(7,,,) + O(k)

= O(75)O(R) + O(z)
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With the same notation as above, let dV be the restriction of Lebesgue
measure to V,(Z), dZ the restriction of Lebesgue measure to SConey 4.

Choose a parametrisation [ : [0,27) — S;,. Following the calcula-
tion (SS) above, we have that, for ¢ € [0, 27);

—b
| Ao 51— Rl = &5 + O(3)

Orav(B(t)
P =74 0})
- Rﬁ(t) + Eﬁ(t)
so that
050 5y 0l
—b(B(t)) €B(t) 1\ 72 . 1
(0T2’Y(B(t))w + w + O(R))B(t) + U,B(t) + O(R)
—b(B(t)) NEIORYZ] — 1
(GTQ'Y(B(t))w + )ﬁ(t) + U3t + O(§>
SEE) L BT 4
= Grraye T ~w )P () + 54y +6(0,1)
where 6(0,1) = O(%) uniformly in ¢, and is analytic in 6 and ¢, so
that maz(|25],|2]) < N, for some N € R~g. It follows that;

o _ b(BW)BW) , 95(6.1)
a0 62ray(B(t))w o0

_ Aégt)g(t) + ('9(58(3 ,t)

L~

where A;(t) = %

w

=

or _ ( (=boBY () | bBE®)(oB) (1) | (oB)()\7 —b(B(1) | Bw\F
ot = GGy T braroow T JB(E)+( 5B ()

+(@o BY(¢) + 25

(Ag(t + A (£)B() + (A4T(t) +A5(t))3/(t) + (To B)'(t) + 8522,0

g

where;

(B, bBE)B) W
A1) = G T heesEou
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so that {A;, As, As, Ay, A5} are analytic and bounded on the interval
[0, 27]. We have, for ¢ € [0,2n), that (vo3)(t).b(t) = 0, pr*((vep)(t)) =
0, so that pr*((v o B)(t)) = 0. Similarly, pr*(8(t)) = B(t) so that

—/

pr(B'(8) = B'(0).
It follows that;
ng(e) y a?(;t(e) _ Aégt)(mg(t) + As()B(t) x B (t) + (1. 1)

pr*((??ae(e)) Aéét)ﬂ(t)‘i‘pr (85 (Gt))

= (228 4 A3(1)B(8) + (242 + A5(t)B (1) + O(1, 1)

pri (58 x pre(20) = MO (A0 4 A (1)B(t) x B(t) + O'(35.t)

It follows that, using Newton’s expansion;

| 2300 x 220 210 (2400 1 A5 (6)B(1) x B (1)+O(

lpr <w<”>za<3Twh|_‘rtéRA“”+A<>ﬁuw¢uw+ow
_ (AL (A1) +0A1 () As (1) B() < B ()+0(0,1)]
(A1) Aa(t)+0A1(1) A5 (1) B(1) B (£)+0'(6,1)|

— |A1(t)A4(t)f(t)X6() 0(6.1)]
|A1(H) A1 (£)B()xB (£)+0 (6,1)]

Bl
t)l

L4
02’

Lt
2>

_ (1+0"(0.4)?
(1407 (6,1))

_ (1 + %O”(@,t) + O”//(Qz,t))(l _ %O”/(@,t) + O”m<92,t))
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=1+ 0(0,t)

=1+ 0(%,t) (S55)

1
R’
so that;

AV (") =dZ(T) + O(

. )dZ(T")

and, similarly;

av () = dZ(7,,,) + O(,t)dZ(7,,,)

opp opp opp

As above, using (555) now for (v), (vi), we have that;
(i). ™ =7 +O(L,1)

(i1). Ty = Thopy + O(5, 1)

(i6i). HY(F") = H*(7') + O35, )

(iv). H(72,) = H™(7,,,) + O(,1)

(v). V(") = dZ(F') + O(5, t)dZ(7)

(vi). AV (ry,) = dZ(7,,,) + O(%, t)dZ(7,,,)

(vid). H*(7') + H (7,,,) = O(gs,1)
(vidi). dZ(F') = dZ(7,,) = O(R, )

Then, using (i) — (viii);

H*(F")dV (7" + H= (72 )dV (77

UPP OPP )

75 DAV (7) + [H™(7,,) + O(gs, 1)|dV (75,,)

= [H*(")+0(5, )|[dZ (F)+O(5, )dZ 7))+ [H~ (7

= [H* (") + O(5

)+0(55, [dZ(T,,)

OPP

+O(5,1)dZ (7))

opp

= H*(F)dZ(7')+H ™ (70,,)dZ (70, +H* (7)O(5, ) O(R)+H ™ (7,,,)
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+0(35, )O(R, 1)+0(35, 1) O (%, ) O(R, 1) +0( 25, 1) O(R, 1) +0 (., 1) O(

B3>

= H*(7)dz(¥)+ H (T,,,)dZ(T,,,) + O(3,1)

opp

.................... Look at argument of (UU) again, drd~y, (0 <y < 2m).
Final integration over 0 < w < s, exclude discrete case, use Lemma

0.3.
U

Lemma 0.8. Let {T,y}subsetR?, let | C R? be a line, with {p,p'} C 1
andp #7D. Then if Ty =D+ NP — ), we have that;

limasoo([Tx = 9| = [2x = T]) = —limas - (|Z2 = Y| — [72 = 7))
Proof. By rotating and translating coordinates (x,y,z), which pre-
serves distance, we may assume that [ is the line y = z = 0, p = 0,
7 = (20,0,0), ¥ = (y1,92,0) and 7 = (71,79, 73). Then, using Newton’s
expansion;

Z\ — Y| — |2\ — 7

= K)\x()a 07 O) - (y17 Y2, 0)‘ - |()\ZL'(), 07 0) - (Tb T2, TS)|

= [(Azo — y1)? + 18] — [(A\wo — r)? + 73 + 132

= [N22 — 2 zoy; + y2z — [(N223 — 2A\xory + 2]z

2 .1 2 41
= [Azo|[1 — 32 + 35517 — o[l — 325 + 355]2

— Aaol(1 = £ + O()) = Awol(1 = £ +O(3))

__ sign(My + sign(A)r1 + O(%)

- xo xo

where y = |7 and r = |F|, so that;

limysoo(|Zh =9l — B0 = 7)) = -2 + 2L
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limys—oo(|Trx =gl = [T = 7)) = 2 — 2L

= —limyooo(|Tx — Y| — |Zx — 7|)

O

Definition 0.9. For f € C®°(R*) and h € R, we define the time shift
" by fM@,t) = f(T,t +h). For a field f, with f = (f1, fo, f3) and
fi € C®(RY), 1< i <3, we define ' = (I, fb, fh).

Lemma 0.10. Let (p,.J) be a charge and current configuration with
p e C®R"Y, J = (j1,j2,J3), and j; € C*(R*), 1 < i < 3, such
that (p,J) satisfies the continuity equation. Then, for h € R~q, the
time shifts (ph,jh) satisfy the continuity equation and so do the sums
(p—i—ph,j—i—jh). If for h € R~q, there exists electric and magnetic fields
(Ew, By) such that (p tph,jijh,ﬁh,gh) satisfy Mazwell’s equations,
then there exist fields E' and B such that (p,J, E, B) satisfy Mazwell’s
equations.

Proof. By the hypotheses, we have for {hy, he} C R, with hy > hy
that there exist pairs (E},,, By,) and (Ey,, By,) such that (p+ p"t, J +
7hl,Eh1,§hl and (p+ th,j—i-th,Ehz,Eh,z satisfy Maxwell equations,
so that, taking the difference, (p" —p"2, T -7 , En,—Eny, Br, —Bh,)
satisfy Maxwell’s equations, (x). Then hy — hy > 0, so that, by the
hypotheses, there exist (Ej,_pn,, Bh,—s,) such that (p 4+ ph2=m J +
7h2_h1,Eh2_h1,E;Z_Q_il)_satisfy Maxwell’s equations, (x*). As is eas-
ily checked, if (p, J, F, B) satisfy Maxwell’s equations, then, for h € R,
(ph,jh,Eh,Eh) satisfy Maxwell’s equations, so that, from (xx);

—h —ho—hi+h1 —=h —h
hi ho—hi+h1 1 2—hi1+h1 1 1
(p +p J o+ J ,Ehrhp Bhrhl)

—h1  —=hs —=h —h
= (" + 0" T+ T By Bhgpy) (5% %)
satisfies Maxwell’s equations. Then adding the equations (x), (% * %),
we obtain that;

—hy — — —h — — —h
(20h172j 17Eh1 - Eh2 + Eh;—hl’Bhl - Bh2 + Bh;_hl)

satisfies, Maxwell’s equation and;

—h

— —= —h1 = = —hi
(ph17 J Y %(Ehl - EhQ + Ehg—h1)7 %(Bhl - Bh2 + Bhg—hl))
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satisfies Maxwell’s equations. Again, by the observation above, it
follows that;

—h

—hi—h —h ——h
hi—h 1—h1 1 1—h1 1
(p g ) §<Eh

——hi  —h ——hi  —hi—h
. — B, s By h)s %(Bhl — By, o+ Bh;hi))

_7h1 _

- —=—hi = o mS—h =
(p7J7%(Eh1 _Eh2 +Eh2—h1)7%<Bh1 _Bh2 +Bh2—h1>)

satisfies Maxwell’s equations, as required. 0

Lemma 0.11. Let (py, Jw) for w # ¢, be the smooth charge and cur-
rent configurations defined above, satisfying the continuity equation.
Then the causal fields (E.,, B,,) defined by Jefimenko’s equations exist
forw # ¢, with (puy, Juw, Ew, By) satisfying Mazwell’s equations. More-
over limy o Ey and limy,_,. B, exist and define fields (EC,EC such that
(pe, Jes Ee, B.) satisfy Mazwell’s equations.

Proof. The first claim will be proved later, the second claim follows
from a result in [?]. For h € Rsq, we have that (p, + p", J, + 7:1)
satisfies the continuity equation, w # c. By the observation in the pre-
vious lemma, (p, + p%, Jo + 7};, E,+ EZ, B, + EZ) satisfies Maxwell’s
equations, and is defined by Jefimenko’s equations relative to (p, +
ol T + 7:1) By the main proof, (choosing the initial conditions at
%, between t and t + h) we have that linm,_,.(E, + EZ,) = E.; and

1imy—se( By + F};) = B, exist, so that (more proof required);
. W =h = =h o= =h
= (pc + P?, 70 + 7?7 Ec,ha Ec,h)
satisfies Maxwell’s equations. By Lemma 0.10, for {hy,ha} C R-o,

with hy < hg, we have that;

— {,=—hi  —=—h = R p—
(pm Je, %(Ec,hll - Ec,hgl + Ec,h2—h1)7 %(Bc,hll - Bc,hg1 + Bc,h2—h1))

= (Per Ter 21y se(Buy + B )™ — limuyo(Bo + Bot)

ity se(By + B2 7)), Hlimye(By + BLY) ™

limye(Bo + B) M + limye(Bw + B2 ")

w

- (pc, Jc: limw—mea limw—me)
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satisfies Maxwell’s equations, as required.
O
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