
SOME RESULTS IN BIOCHEMISTRY AND
BIOPHYSICS

TRISTRAM DE PIRO

Abstract. We consider some results in biochemistry and provide
a dosage level of sodium bicarbonate to correct a ph imbalance from
acidosis, noting the imbalance can be calculated from an arterial
blood gas pressure test and an electrolyte panel. We consider some
results in biophysics, and provide a dosage level of sodium bicar-
bonate to correct an increased membrane potential, which may
result in psychosis, noting the potential can be calculated from an
ECG. The level of acidosis is directly linked to an increase in mem-
brane potential and sodium bicarbonate can correct both factors.

1. Biochemistry

Lemma 1.1. Henderson-Hasselbalch Equation for Carbonic Acid

We have that;

ph ' −log10(Ka) + log10(
ns
na

) ' −log10(Ka) + log10(
ms
ma

)

where Ka is the equilibrium constant for the disassociation of car-
bonic acid in water H2CO3 ↔ H+ +HCO−3 where na is the number of
moles of acid, ns is the number of moles of the conjugate base HCO−3 ,
and {ma,ms} are the corresponding molalities, calculated with water
as the solvent.

and;

ph ' −log10(Kb) + 4 + log10(
[HCO−3 ]

PCO2
)

where Kb is the equilibrium constant for the combination of CO2 and
H2O into carbonic acid followed by its disassociation in water, CO2 +
H2O ↔ H2CO3 ↔ H++HCO−3 , where [HCO−3 ] is the concentration of
the bicarbonate ion and PCO2 is the partial pressure of carbon dioxide.

Proof. We use the methods in [7]. For the first claim, with reactions
in which the solvent H2O is not involved, we have that the equilibrium
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constant is given by;

Ka =
a(H2O)a(H+)a(HCO−3 )

a(H2CO3)

We have that a(H2O) = γ0x0 = γ0n0

n
' 1 where γ0 ' 1 is the activity

coefficient and x0 = n0

n
' 1 as we can assume we are working with a di-

lute solution, considering H2O as substance 0, with n = n0+na+2ns. It
follows that, using the definition of the molalities ma = γana

w
, ms = γsns

w
,

where {γa, γs} are the activity coefficients and w is the weight of the
solvent, the fact that γs ' γa ' 1, that;

Ka ' a(H+)a(HCO−3 )

a(H2CO3)
=

a(H+) γsns
w

γana
w

= a(H+)γsns
γana

' a(H+)ns
na

so that, using the definition in [12] and the fact that ns
na
' ms

ma
;

ph = −log10(a(H+))

' −log10(Kanans
)

= −log10(Ka) + log10(
ns
na

)

' −log10(Ka) + log10(
ms
ma

)

For the second claim, considering the reaction CO2 +H2O ↔ H+ +
HCO−3 , we have that;

Kb =
a(H+)a(HCO−3 )

a(H2O)a(CO2)

Again, we have that a(H2O) = γ0x0 = γ0n0

n
' 1 where γ0 ' 1 is the

activity coefficient and x0 = n0

n
' 1 as we can assume we are working

with a dilute solution, considering H2O as substance 0, and CO2 as
substance 1, with n = n0 + n1 + 2ns. It follows that, using the defini-
tion of the molality ms = γsns

w
, where γs is the activity coefficients and

w is the weight of the solvent, the fact that γs ' 1, that;

Kb ' a(H+)a(HCO−3 )

a(CO2)
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=
a(H+) γsns

w

a(CO2)

' a(H+)ns
wa(CO2)

= a(H+)ns
ρgva(CO2)

where w = ρgv, ρ and v are the density and volume of the solvent,
g is the gravitational constant.

so that, using the Definition in [12];

ph = −log10(a(H+))

' −log10(Kbρgva(CO2)
ns

)

= −log10(Kb)− log10(ρg) + log10(
ns
v

) + log10(
1

a(CO2)
)

= −log10(Kb)− log10(ρg) + log10(
[HCO−3 ]

a(CO2)
)

' −log10(Kb)− 1 + log10(
[HCO−3 ]

a(CO2)
)

We have that a(CO2) '
fPCO2

P ◦
, where f is the fugacity of CO2 cal-

culated in a vapour mixture of H2CO3, CO2 and H2O. This gives;

ph ' −log10(Kb)− 1 + log10(
101325[HCO−3 ]

fPCO2
)

' −log10(Kb) + 4 + log10(
[HCO−3 ]

fPCO2
)

�

Remarks 1.2. From the equation;

∂G
∂ξ
|(T,P ) = ∆G◦(T ) +RTln(Kb)

and the fact that at chemical equilibrium (T, P ), ∂G
∂ξ
|(T,P ) = 0, we

obtain that;

Kb = e
−∆G◦(T )

RT

In [2], values of ∆G◦ are given for various disassociations of acids,
but I couldn’t find the result for H2CO3 ↔ H+ + HCO−3 . However,
they are in the order of 5 to 12 kcals/mol, which is about 20 to 50 J. I
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found the value of ∆G◦(T ) for CO2+H2O ↔ H2CO3 to be 103.67×103

J/mol at 298.15K, about 25◦C, significantly larger then the value for
the disassociation, so we can use this value for ∆G◦(T ) at approxi-
mately room temperature 298.15K. It follows that;

Kb = e
−∆G◦(T )

RT

' e
−105

8x300 ' e−40

so that −log10(Kb) ' −log10(10−20) = 20

I found a theoretical calculation of f for a pure and an air mixture at
298K to be about 105 and 35 Pa, see [1], the last being about the same
as the result for a seawater mixture, see [8]. As a seawater mixture
probably contains some carbonic acid, we can estimate;

−log10(f) = −log10(35) ' −1.5

ph ' −log10(Kb) + 4 + log10(
[HCO−3 ]

fPCO2
)

' 20 + 4− 1.5 + log10(
[HCO−3 ]

PCO2
)

= 23 + log10(
[HCO−3 ]

PCO2
) (∗)

The only reference I could find for this result was on Wikipedia, which
gives;

ph = 6.1 + log10(
[HCO−3 ]

0.0307PCO2
)

= 6.1− log10(0.0307) + log10(
[HCO−3 ]

PCO2
)

' 7.6 + log10(
[HCO−3 ]

PCO2
)

so there is a discrepancy of 15.4 between the two results, provided the
equilibrium reaction is obtained at about room temperature.

Lemma 1.3. Nernst Equation in Ionic Homeostasis and Nervous Con-
duction

In the case of a sodium channel, we have that;
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∆Ψ = −RT
F
ln [Na+]out

[Na+]in

see [6], where ∆Ψ is the membrane potential, [Na+]out and [Na+]in
are the concentration of sodium ions at (T, P ) across the junction.

Proof. The proof is that we can consider the two concentrations as two
species with molar amounts {n1, n2}. We have that the chemical Gibbs
free energy of the two species is given by G(T, P, n1) and G(T, P, n2),
with total chemical free energy given byGchem(T, P, n1, n2) = G(T, P, n1)+
G(T, P, n2). The electrical free energy Gel of the two species is given
by −zFVoutn1 and −zFVinn2, where z is the valence of the ion, F is
Faraday’s constant and {Vout, Vin} are the potentials. It follows that
the electrical and chemical free energy Gtot is given by;

Gtot(T, P, n1, n2) = Gchem(T, P, n1, n2) +Gel(n1, n2)

= Gchem(T, P, n1, n2)− zFVoutn1 − zFVinn2

= G(T, P, n1) +G(T, P, n2)− zFVoutn1 − zFVinn2 (∗)

At electrical and chemical equilibrium, we have that;

dGtot = ∂Gtot
∂n1

= ∂Gtot
∂n2

= 0

so that, by (∗);

∂G
∂n1
− zFVout = ∂G

∂n2
− zFVin = 0, (∗∗)

By the definition of chemical potential, µ(T, P ), we have that;

∂G
∂n1

(T, P ) = µ(T, P ) = µ◦(T ) +RTln(a1)

∂G
∂n2

(T, P ) = µ(T, P ) = µ◦(T ) +RTln(a2), (∗ ∗ ∗)

so that, by (∗∗), (∗ ∗ ∗);

µ◦(T )+RTln(a1)−zFVout = µ◦(T )+RTln(a2)−zFVin = 0, (∗∗∗∗),
(1).

1 According to Lemmas 1.4 and 1.5 we cannot strictly cancel the µ◦(T ) term on
both sides of the equation, as it depends on the number of ions on both sides of
the channel. As the difference is quite small, we can make a good approximation
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so that;

∆Ψ ' Vout − Vin = RT
z
ln(a1

a2
)

By the definition of activities, we have that a1 = γ1n1

w
, a2 = γ2n2

w
, so

that;

a1

a2
= γ1n1

γn2
'

n1
V
n2
V

= [X]out
[X]in

assuming the activity coefficients γ1 ' γ2 ' 1 and V is the volume
of the solvent. It follows;

∆Ψ ' Vout − Vin = RT
z
ln( [X]out

[X]in
)

This result differs by a factor of −1.
We also have from (∗ ∗ ∗∗), the fact that the density of water ρ is 1,

and Lemma 1.5that;

RTln(a1) ' RTln(n1

w
)

= RTln( [X]outW
w

)

= RTln( [X]outW
gρW

)

= RTln( [X]out
g

)

= zFVout − µ◦

here. Otherwise, we can make a more accurate calculation;

∆Ψ = RT
z ln(a1a2 ) + (kT − P ∗V ) +RTln(xout)− (kT − P ∗V )−RTln(xin)

' RT
z ln( [X]out

[X]in
) +RTln( [X]out

[X]in
)

= RT z+1
z ln( [X]out

[X]in
)



SOME RESULTS IN BIOCHEMISTRY AND BIOPHYSICS 7

so that [X]out = ge
zFVout−µ

◦
RT (†), (2).

�

Lemma 1.4. For an ideal gas, obeying the gas law PV = knT , we
have that;

∂G
∂n
|(T,P,n) = kT (1− n) = kT − PV

Proof. By the first law of thermodynamics and the definition of en-
tropy, we have that;

dQ = dU + PdV = TdS

so that, using the definition of Gibbs energy;

dG = dU + PdV + V dP − TdS − SdT

= dQ+ V dP − dQ− SdT

= V dP − SdT

Using the ideal gas law PV = knT , and assuming dT = 0, we have
that;

2 If we use Lemma 1.5, we obtain that;

[X]out = ge
zFVout−µ◦

RT

= ge
zFVout−(kT−P∗V ∗−RTln(xout))

RT

= ge
zFVout−kT−P∗V ∗

RT e−ln(xout)

= g
xout

e
zFVout−kT−P∗V ∗

RT

= gρ
18×10−3[X]out

e
zFVout−kT−P∗V ∗

RT

so that;

[X]2out = g
18×10−3 e

zFVout−kT−P∗V ∗
RT

[X]out =
√
g10

3
2

3
√
2
e
zFVout−kT−P∗V ∗

2RT
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dG = knTfix
dP
P

so that if we add ε moles of substance to an ideal gas, keeping the
temperature at Tfix and record the difference in pressure while fixing

the volume V , before changing the volume to V2 = (n+ε)V
n

, we obtain
that;

dG = V (P2 − P1) = V (
k(n+ε)Tfix

V
− knTfix

V
) = kεTfix

= G(Tfix, P2, n+ ε)−G(Tfix, P1, n)

G(Tfix, P2, n+ ε)−G(Tfix, P1, n+ ε) = kTfix(n+ ε)
∫ P2

P1

dP
P

= kTfix(n+ ε)(ln(P2)− ln(P1))

so that;

G(Tfix, P1, n+ ε)−G(Tfix, P1, n)

= kεTfix − kTfix(n+ ε)(ln(P2)− ln(P1))

= kTfix(ε− (n+ ε)ln(P2

P1
)

We have that P2 =
k(n+ε)Tfix

V
, P1 =

knTfix
V

, so that P2

P1
= (n+ε)

n

G(Tfix, P1, n+ ε)−G(Tfix, P1, n) = kTfix(ε− (n+ ε)ln(n+ε
n

))

The base pressure is given by P1 =
knTfix
V

and the return volume is
given by;

P1 =
k(n+ε)Tfix

V2
=

knTfix
V

so that V2 = (n+ε)V
n

.

We have that;

[x− (n+ x)ln(n+x
n

)]′|x=0 = [1− ln(n+x
n

)− (n+x)n
(n+x)

]|x=0

= [1− n− ln(n+x
n

)]x=0
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= 1− n

It follows, using L’Hopital’s rule, that;

∂G
∂n
|(Tfix,P1,n) = limε→0

G(Tfix,P1,n+ε)−G(Tfix,P1,n)

ε

= limε→0
kTfix(ε−(n+ε)ln(n+ε

n
))

ε

= kTfix(1− n)

= kTfix − P1V
�

Lemma 1.5. Finding the chemical potential

In a dilute solution of positive ions X in water, assumed to be an
ideal solution, we have that the chemical potential;

µ(T, P ) = kT (1− n) +RTln(x1) = kT − P ∗1 V +RTln(x1)

where n1 is the number of moles of ions X, n2 is the number of
moles of water, n is the combined number of moles of water and ions
X, x1 = n1

n
, PV = knT for the vapour phase of the ions X, considered

as an ideal gas, in equilibrium with X as a liquid and V the equilibrium
volume.

Proof. As the solution is considered ideal, we have that;

µ1(T, P ) = µ∗1(T, P ) +RTln(x1)

where the ions X are considered as substance 1. By the phase rule,
if the solution is in equilibrium with its vapour phase, we have that

µ
∗,(l)
1 (T, P ) = µ

∗,(g)
1 (T, P ). Considering the vapour phase as an ideal

gas, we can use Lemma 1.4 to give;

µ
∗,(g)
1 (T, P ) = kT − P ∗i V ∗

where P ∗i (T, P ) is the equilibrium vapour pressure and V ∗(T, P ) is
the equilibrium vapour volume. The volume V ∗(T, P ) is determined by
temperature and pressure, as if not, with the temperature T and equi-
librium vapour pressure P ∗i fixed, by the ideal gas law, we would have
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a variation in the number of moles n′ present in the vapour phase. De-
noting these variations by {n′1, n′2}, we could force a reaction through
the liquid phase forming a temperature and pressure loop. This con-
tradicts the fact established in [11] that no substance can be formed in
a loop. In practice, we would have to use a strong solution of the ions
X in water to make the final calculation of V ∗.

�

Lemma 1.6. Use of Sodium Bicarbonate 1

[NaHCO3] = 10−D − 10−7

returns an acidosis of 7 −D to a neutral ph of 7, so that a dose of
5.5 × 10−D g of sodium bicarbonate corrects an acidosis ph imbalance
of 7 −D, assuming the complete disassociation of sodium bicarbonate
in water, and D can be calculated using an arterial blood gas pressure
test and an electrolyte panel.

Proof. We have the disassociation of carbonic acid, H2CO3 ↔ H+ +
HCO−3 , (∗) and the disassociation of sodium bicarbonate NaHCO3 ↔
Na+ +HCO−3 , (∗∗). From remark 1.2, we have that the concentration
[H+] in (∗) is given by;

23 + log10(
[HCO−3 ]

PCO2
) = −log10([H+])

The value D of the left hand side of the equation can be calcu-
lated with an arterial blood gas pressure test to measure PCO2 and an
electrolyte panel to measure the bicarbonate concentration [HCO−3 ].
Rearranging, we then obtain that;

[H+] = 10−D (†)

so that we obtain 10−DV moles of H+ ions in a given volume. As-
suming a complete disassociation in (∗∗) and that the Na+ ions in (∗∗)
react with Cl− ions to forma NaCl, while the remaining HCO−3 ions
react with H+ in (∗∗) to form CO2 and H2O, we obtain a reduction
of moles of H+ ions in a given volume V of V [NaHCO3], so by (†),
H+
new = (10−D − [NaHCO3])V (moles), and the concentration is given

by [H+]new = (10−D − [NaHCO3]) and;

phnew = −log10([H+]new)



SOME RESULTS IN BIOCHEMISTRY AND BIOPHYSICS 11

= −log10(10−D − [NaHCO3])

= −log10(10−D(1− [NaHCO3]
10−D

)

= D − log10(1− [NaHCO3]10D)

so that phnew = 7 if;

D − log10(1− [NaHCO3]10D) = 7

iff 1− [NaHCO3]10D = 10D−7

iff [NaHCO3] = 10−D − 10−D10D−7

iff [NaHCO3] = 10−D − 10−7

Assuming the volume V of the human body is 0.0664, we require
0.0664(10−D− 10−7) ' 6.64× 10−D−2 moles of NaHCO3 to correct an
acidosis inbalance of 7−D ph points. This amounts to 6.64×10−D−2×
(23 + 1 + 12 + 3.16) ' 5.5× 10−D g.

�

2. Biophysics

Lemma 2.1. Let (E,B) be an electromagnetic pair such that �2E = 0
and B = 0, where � is the d’Alembertian operator, then there exists a
corresponding pair (V,A) of potentials such that;

(i). E = −5 (V )− ∂A
∂t

(ii). B = 5× A

(iii). �2V = 0

(iv). �2A = 0

There exists (ρ, J, E,B) satisfying Maxwell’s equation, with �2ρ = 0,

�2J = 0, 5(ρ) + 1
c2
∂J
∂t

= 0, �2E = 0, B = 0, and potentials (V,A),

with A = 0, �2V = 0 such that V has the integral representation;

V (x, t) =
∫
R3(f(k)eikct + g(k)e−ikct)eik�xdk



12 TRISTRAM DE PIRO

where k = |k|, k 6= 0.

Proof. The existence of a pair (V1, A1) satisfying (i), (ii) is well known,
see [5]. We then have that;

�2E = �2(−5 (V1)− ∂A1

∂t
)

= −5 (�2V1)− ∂�2A1

∂t

= 0

�2B = �2(5× A1)

5×�2A1

= 0

so that (�2V1,�2A1) are potentials for the electromagnetic pair (0, 0),
(†). If (V2, A2) are a pair such that;

a. 0 = −5 (V2)− ∂A2

∂t

b. 0 = 5× A2

Then, by b, there exists f such that A2 = 5(f), (∗) and by a;

−5 (V2)− ∂A2

∂t
= −5 (V2)− ∂5(f)

∂t

= 5(−V2 − ∂f
∂t

)

= 0

so that by the fundamental theorem of calculus;

V2 = −∂f
∂t

+ h(t) (∗∗)

and, conversely, given {f(x, t), h(t)}, if we define (V2, A2) by (∗), (∗∗),
then a, b are satisfied. By (†), we then have that �2(V1) = −∂k(x,t)

∂t
+l(t),

�2A1 = 5(k(x, t)). We claim that we can find a pair (a(x, t), b(t)), such
that;
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�2(−∂a
∂t

+ b,5(a)) = −(−∂k
∂t

+ l,5(k))

iff (−∂�2(a)
∂t
− c2b′′,5(�2(a))) = (∂k

∂t
− l,−5 (k))

iff �2(a) = −k + f(t) and c2f ′′(t)− c2b′′(t) = −l(t)

if �2(a) = −k and b′′(t) = −l

as we can take smooth antiderivatives of l and solve the non-homogeneous
wave equation �2(a) = −k using, for example, the method of Fourier
transforms, see [4], and solving second order differential equations with
a smooth forcing term, with Abel’s method of characteristics, see [3]. If
(V3, A3) are defined by (∗), (∗∗) and (a(x, t), b(t)), then it is clear that
V = V1 + V3, A = A1 + A3 defines a solution to (i), (ii), (iii), (iv).

For the second claim, we can use the method of [9], utilising the
radial transform condition for J , to find real (ρ, J) such that the con-

tinuity equation is satisfied, �2(ρ) = 0, �2(J) = 0, 5(ρ) + 1
c2
∂J
∂t

= 0

and with J having the integral representation;

J(x, t) =
∫
R3(α(k)keikct + β(k)ke−ikct)eik�xdk

where {α, β} ⊂ S(R3), (3)

3 When using the representations;

ρ(x, t) =
∫
R3(f(k)eikct + g(k)e−ikct)eik�xdk

J(x, t) =
∫
R3(F (k)eikct +G(k)e−ikct)eik�xdk

from [9], we can always impose the conditions that f(k) = g(−k)∗ and
F (k) = −G(−k)∗, to ensure the representation is real. This is because, we have
that ρ(x, t) is real iff ρ(x, t) = ρ(x, t)∗ iff;∫

R3(f(k)eikct + g(k)e−ikct)eik�xdk

= (
∫
R3(f(k)eikct + g(k)e−ikct)eik�xdk)∗

=
∫
R3(f(k)∗e−ikct + g(k)∗eikct)e−ik�xdk

=
∫
R3(f(−k)∗e−ikct + g(−k)∗eikct)eik�xdk, ((k)′ = −k, dk′ = | − 1|dk = dk)

Equating coefficients, we obtain that, for all x ∈ R3;
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If we define E1 by;

− 1
ε0

∫
R3(α(k)

ikc
keikct + β(k)

ikc
ke−ikct)eik�xdk (†)

From the representation (†), and the fact that {α(k)k
k
, β(k)k

k
} are

bounded, with rapid decrease at infinity, we have that E1 exists, and

then ∂E1

∂t
= − 1

ε0
J . By the results of [9], there does exist E with

�2E = 0 (ρ, J, E, 0) satisfies Maxwell’s equations, so that ∂E
∂t

= − 1
ε0
J .

Differentiating under the integral sign, we can show that E1 ∈ C∞(R4),
and the form of the representation (†) gives that �2E1 = 0. Then, as
∂(E−E1)

∂t
= 0 and �2(E − E1) = 0, we obtain that 52(E − E1) = 0, so

that E − E1 is harmonic. Using the fact that {α(k)k
k
, β(k)k

k
} ⊂ L1(R3),

uniformly bounded in L1(R3) norm with respect to t, we have that E1

is bounded. Moreover, by the Riemann-Lebesgue lemma, we have that;

lim|x|→∞E1(x, t) = 0

uniformly in t. By the results of [10], E is bounded, of moderate
decrease, so that E − E1 = 0 and E = E1, so that E has the repre-

sentation (†). We have that5(eik�x) = ikeik�x, so that if we define V by;

V (x, t) = −i
ε0

∫
R3(α(k)

ikc
eikct + β(k)

ikc
e−ikct)eik�xdk (††)

∫
R3 f(k)− g(−k)∗eik�xdk

=
∫
R3 g(k)− f(−k)∗eik�xdk

= 0

so that, by the inversion theorem, f(k) − g(−k)∗ = 0. The vector version is
similar with F (k)−G(−k)∗ = 0

When passing to the radial transform condition F (k) = α(k)k, G(k) = β(k)k,
we have that;

F (k) = G(−k)∗

iff α(k)k = −β(k)∗k

so this condition becomes α(k) = −β(k)∗.
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then, by the fact that {α(k)
ikc
, β(k)
ikc
} ⊂ L1(R3), we have that V is well

defined and −5(V ) = E. As E is real, we must have that5(Im(V )) =
0, so that, by the FTC, Im(V ) = c. We have that V ∈ C∞(R4) and
by the form of (††), we have that �2(V ) = 0. If we then define A = 0,
we have that �2(A) = 0 and (i)− (iv) in the statement of the Lemma
are satisfied, so that (V,A) are potentials. Again, we can use the fact

that {α(k)
k
, β(k)

k
} ⊂ L1(R3) and the Riemann-Lebesgue lemma, to show

that c = 0, so that V is real as well, (4). �

Lemma 2.2. Let V be a potential satisfying �2V = 0, where � is the
d’Alembertian operator. Then, for x ∈ R3, we can write;

Vx(t) =
∫
R>0

ωk,x(t)dk (∗)

4 The second argument establishes the existence for the hypotheses, but we
also want to impose the condition that J |S(0,r0) = 0. By the argument in [9], we
choose;

J(x, t) =
∑
l∈Z≥0

∑
k∈Slr0 ,k>0

(α(k)eikct + β(k)e−ikct)
∫
S(0,k)

keik�xdk

where {α, β} ⊂ S(R) but we are restricting to a discrete sum. In this case, we
have that J is bounded, but we don’t necessarily have that lim|x|→∞J(x, t) = 0.

We then define E1 by;

E1 = − 1
ε0

∑
l∈Z≥0

∑
k∈Slr0 ,k>0

(α(k)ikc e
ikct + β(k)

ikc e
−ikct)

∫
S(0,k)

keik�xdk (†)′

From the representation (†)′, the fact that {α, β} ⊂ S(R), we have that E1

exists and is bounded, and then ∂E1

∂t = − 1
ε0
J . We have to adapt the results of [9]

and [10], to show there does exist E with �2E = 0 (ρ, J,E, 0) satisfies Maxwell’s

equations, so that ∂E
∂t = − 1

ε0
J . Again, in this case, we will only be able to show

that E is bounded. Differentiating under the integral sign, we can show that
E1 ∈ C∞(R4), and the form of the representation (†)′ gives that �2E1 = 0. Then,

as ∂(E−E1)
∂t = 0 and �2(E − E1) = 0, we obtain that 52(E − E1) = 0, so that

E − E1 is harmonic. It follows that E − E1 = c and E = E1 + c. However, as
all of Maxwell’s equations involve derivatives in the electrical and magnetic fields,
and are real equations, we still have that (ρ, J,E1, 0) and (ρ, J,Re(E1), 0) solve

Maxwell’s equations. We have that 5(eik�x) = ikeik�x, so that if we define V by;

V (x, t) = −i
ε0

∑
l∈Z≥0

∑
k∈Slr0 ,k>0

(α(k)ikc e
ikct + β(k)

ikc e
−ikct)

∫
S(0,k)

eik�xdSk(k) (†′†′)

then, we have that V is well defined and − 5 (V ) = E1, − 5 (Re(V )) =
Re(E1). We have that Re(V ) ∈ C∞(R4) and by the form of (†′†′), we have that
�2(Re(V )) = 0. If we then define A = 0, we have that �2(A) = 0 and (i)− (iv) in
the statement of the Lemma are satisfied, so that (Re(V ), A) are potentials.
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where ωk,x(t) solves the differential equation for simple harmonic mo-
tion with frequency kc

2π
, ω′′k,x(t) = −k2c2ωk,x(t). If the potential V is real,

we have that each ωk,x in the representation (∗) is real as well.

Proof. As �2V = 0, taking Fourier transforms, we have that;

F(�2V )(k, t) = F(∂
2V
∂x2 + ∂2V

∂y2 + ∂2V
∂z2 − c2 ∂

2V
∂t2

)(k, t)

= −k21F(V )(k)− k22F(V )(k)− k23F(V )(k, t)− c2 ∂
2F(V )
∂t2

(k, t)

= −k2F(V )(k, t)− c2 ∂
2F(V )
∂t2

(k, t)

= 0

where k2 = k21 + k22 + k23 > 0. For fixed k ∈ R3, solving the corre-
sponding second order ODE in t, we obtain that;

F(V )(k, t) = A(k)eikct +B(k)e−ikct

and applying the inversion theorem, assuming sufficient decay in V ,
and using polar coordinates, (k, θ, φ) we obtain that;

V (x, t) = 1

(2π)
3
2

∫
R3 F(V )(k, t)eik�xdk

= 1

(2π)
3
2

∫
R3(A(k)eikct +B(k)e−ikct)eik�xdk

= 1

(2π)
3
2

∫
R>0

∫ π
0

∫ π
−π(A(k, θ, φ)eik(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3)k2)eikct

+(B(k, θ, φ)eik(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3)k2)e−ikctdkdθdφ

For fixed k > 0, let;

ωk,x(t) =
∫ π
0

∫ π
−π(A(k, θ, φ)eik(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3)k2)eikct

+(B(k, θ, φ)eik(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3)k2)e−ikctdθdφ

Then, differentiating under the integral sign;

ω′′k,x(t) =
∫ π
0

∫ π
−π(ikc)2(A(k, θ, φ)eik(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3)k2)eikct

+(−ikc)2(B(k, θ, φ)eik(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3)k2)e−ikctdθdφ
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= −k2c2ωk,x(t)

so that;

Vx(t) =
∫
k>0

ωk,x(t)dk

as required.

If V is a real solution to �2V = 0, we have that, using polar coordi-
nates again;

V (x, t) = 1

(2π)
3
2

∫
R3([Re(A)(k) + iIm(A)(k)][cos(kct) + isin(kct)]

+[Re(B)(k) + iIm(B)(k)][cos(kct)− isin(kct)])

[cos(k � x) + isin(k � x)]dk

= 1

(2π)
3
2

∫
R3((Re(A+B)(k)cos(kct) + Im(B − A)sin(kct))cos(k � x)

+(Im(−A−B)cos(kct) +Re(B − A)sin(kct))sin(k � x))dk

= 1

(2π)
3
2

∫
R3 [f1(k)cos(k � x)cos(kct) + f2(k)cos(k � x)sin(kct)

+f3(k)sin(k � x)cos(kct) + f4(k)sin(k � x)sin(kct)]dk

= 1

(2π)
3
2

∫
R>0

∫ π
0

∫ π
−π[f1(k, θ, φ)cos(cos(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2

+cos(θ)x3))cos(kct)

+f2(k, θ, φ)cos(cos(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3))sin(kct)

+f3(k, θ, φ)sin(cos(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3))cos(kct)

+f4(k, θ, φ)sin(cos(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3))sin(kct)]k2dkdθdφ

where f1 = Re(A + B), f2 = Im(B − A), f3 = −Im(A + B),
f4 = Re(B − A).

For k ∈ R>0, let;

ωx,k(t) = 1

(2π)
3
2

∫ π
0

∫ π
−π[f1(k, θ, φ)cos(cos(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2
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+cos(θ)x3))cos(kct)

+f2(k, θ, φ)cos(cos(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3))sin(kct)

+f3(k, θ, φ)sin(cos(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3))cos(kct)

+f4(k, θ, φ)sin(cos(sin(θ)cos(φ)x1+sin(θ)sin(φ)x2+cos(θ)x3))sin(kct)]k2dθdφ

Then, clearly ωx,k is real, ω′′x,k(t) = −k2c2ωx,k and;

Vx,t =
∫
R>0

ωx,k(t)dk
�

Lemma 2.3. We have that;∫
S(0,k)

e−ik�xdS(k) = 4πk sink|x||x| , x 6= 0

= 4πk2, x = 0

In the case when J satisfies the radial transform condition of [9] and
{α, β} ⊂ S(R), we have that;

V (x, t) = −4π
ε0

∫
R>0

(α(k)sin(k|x|)
c|x| eikct + β(k)sin(k|x|)

c|x| e−ikct)dk

where V (x, t) is given by Lemma 2.1, and;

J = −(4πc4
∫
R>0

(α(k)(k|x|cos(k|x|)−sin(k|x|))|x|3 eikct+β(k)(k|x|cos(k|x|)−sin(k|x|))
|x|3 e−ikct)dk)x

If x1 6= x2, using the notation of Lemma 2.2, we have that, for
k ∈ R>0;

ωx1,k − ωx2,k

= θ(x1, x2)(Re(α + β)(k)cos(kct) + Im(β − α)(k)sin(kct))

The amplitudes {Hx1 , Hx2} of the potentials {ωx1,k, ωx2,k} are given
by;

Hx1 = Gsin(k|x1|)
c|x1|θ(x1,x2)

Hx2 = Gsin(k|x2|)
c|x1|θ(x1,x2)
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where;

θ(x1, x2) = [|x2|sin(k|x1|)−|x1|sin(k|x2|)]
c|x1||x2|

and G, together with the frequency kc
2π

can be measured from an ECG.
The potentials {ωx1,k, ωx2,k, ωx1,k − ωx2,k} are synchronous in time, but
with different amplitudes.

Proof. The case when x = 0 is clear. When x 6= 0, first observe that
the integral is invariant, in the sense that if |x1| = |x2|, then;∫

S(0,k)
e−ik�x1dS(k) =

∫
S(0,k)

e−ik�x2dS(k)

Using polar coordinates, k1 = kcos(θ), k2 = ksin(θ)cos(φ), k3 =
ksin(θ)sin(φ), 0 ≤ θ ≤ π, −π ≤ φ < π, we can, by rotating coordi-
nates, assume that x = (|x|, 0, 0), so that k � x = k1|x| = kcos(θ)|x|.
Using the measure dS(k) = k2sin(θ)dθdφ, we have that;∫

S(0,k)
e−ik�x1dS(k) =

∫ π
pi

∫ π
0
e−ikcos(θ)|x|k2sin(θ)dθdφ

= 2πk2
∫ π
0
e−ikcos(θ)|x|sin(θ)dθ

Making the substitution, ξ = cos(θ), with dξ = −sin(θ)dθ, we have
that;∫ π

0
e−ikcos(θ)|x|sin(θ)dθ =

∫ −1
1

e−ikξ|x| − dξ

=
∫ 1

−1 e
−ikξ|x|dξ

= [ e
−ikξ|x|

−ik|x| ]1−1

= e−ik|x|−eik|x|
−ik|x|

= 2sin(k|x|)
k|x

so that;∫
S(0,k)

e−ik�x1dS(k) = 2πk2 2sin(k|x|)
k|x

= 4πk sin(k|x|)|x|
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Using the result, we obtain that;

V (x, t) = − i
ε0

∫
R3(α(k)

ikc
eikct + β(k)

ikc
e−ikct)eik�xdk

= − 1
ε0

∫
R3(α(k)

kc
eikct + β(k)

kc
e−ikct)eik�xdk

= − 1
ε0

∫
R>0

(α(k)
kc
eikct + β(k)

kc
e−ikct)

∫
S(0,k)

eik�xdSk(k)dk

= − 1
ε0

∫
R>0

(α(k)
kc
eikct + β(k)

kc
e−ikct)4πk sin(k|x|)|x| dk

= −4π
ε0

∫
R>0

(α(k)sin(k|x|)
c|x| eikct + β(k)sin(k|x|)

c|x| e−ikct)dk, (]) (5).

By Maxwell’s first equation, the definition of the potential V , the
fact that V satisfies the wave equation �2V = 0, the explicit form of
V , we have that;

ρ = ε0div(E)

= −ε0div(5(V ))

= −ε052 (V )

−ε0c2 ∂
2V
∂t2

= − 1
µ0

∂2V
∂t2

= 4π
ε0µ0

∂2

∂t2
(
∫
R>0

(α(k)sin(k|x|)
c|x| eikct + β(k)sin(k|x|)

c|x| e−ikct)dk)

5

When we impose the condition that J |S(0,r0) = 0, we obtained that, in the
footnote to Lemma 2.1, that;

Re(V )(x, t) = Re(−iε0
∑
l∈Z≥0

∑
k∈Slr0 ,k>0

(α(k)ikc e
ikct +

β(k)
ikc e

−ikct)
∫
S(0,k)

eik�xdSk(k))

= Re(− 4π
ε0

∑
l∈Z≥0

∑
k∈Slr0 ,k>0

(α(k)sin(k|x|)c|x| eikct + β(k)sin(k|x|)
c|x| e−ikct)dk)

= − 4π
ε0

∑
l∈Z≥0

∑
k∈Slr0 ,k>0

(α(k)sin(k|x|)c|x| eikct + β(k)sin(k|x|)
c|x| e−ikct)dk

by comparison with the continuous spectrum case.
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= 4πc2
∫
R>0

(−k
2c2α(k)sin(k|x|)

c|x| eikct − k2c2β(k)sin(k|x|)
c|x| e−ikct)dk

= −4πc3
∫
R>0

(k
2α(k)sin(k|x|)

|x| eikct + k2β(k)sin(k|x|)
|x| e−ikct)dk, (6)

We have that;

5( sin(k|x|)|x| ) = (|x|kcos(k|x|)−sin(k|x|))
|x|3 x

By the fact that 5(ρ) + 1
c2
∂J
∂t

= 0, we have that;

∂J
∂t

= −c25 (ρ)

= (4πc5
∫
R>0

(k
2α(k)(k|x|cos(k|x|)−sin(k|x|))

|x|3 eikct+k2β(k)(k|x|cos(k|x|)−sin(k|x|))
|x|3 e−ikct)dk)x

As above, using the fact that �2(J) = 0, �2(−c25(ρ)) = 0, the usual
wave to harmonic argument, and the fact that lim|x|→∞J(x, t) = 0, we
have that;

J = −(4πc4
∫
R>0

(α(k)(k|x|cos(k|x|)−sin(k|x|))|x|3 eikct+β(k)(k|x|cos(k|x|)−sin(k|x|))
|x|3 e−ikct)dk)x

It follows from (]) that;

ωx1,k − ωx2,k

= (α(k)sin(k|x1|)
c|x1| eikct+β(k)sin(k|x1|)

c|x1| e−ikct)−(α(k)sin(k|x2|)
c|x2| eikct+β(k)sin(k|x2|)

c|x2| e−ikct)

= (α(k)(sin(k|x1|)
c|x1| − α(k)sin(k|x2|)

c|x2| )eikct + (β(k)sin(k|x1|)
c|x1| − β(k)sin(k|x2|)

c|x2| )e−ikct

= (α(k)[|x2|sin(k|x1|)−|x1|sin(k|x2|)]
c|x1||x2| )eikct+(β(k)[|x2|sin(k|x1|)−|x1|sin(k|x2|)]

c|x1||x2| )e−ikct

= (Re(α+β)(k)[|x2|sin(k|x1|)−|x1|sin(k|x2|)]
c|x1||x2| )cos(kct)+( Im(β−α)(k)[|x2|sin(k|x1|)−|x1|sin(k|x2|)]

c|x1||x2| )sin(kct)

= [|x2|sin(k|x1|)−|x1|sin(k|x2|)]
c|x1||x2| (Re(α+β)(k)cos(kct)+Im(β−α)(k)sin(kct))

Using the fact that;

Acos(kct) +Bsin(kct) = Gcos(kct+ w)

6 When J |S(0,r0) we obtain;

ρ = −4πc3
∑
l∈Z≥0

∑
k∈Slr0 ,k>0

(k
2α(k)sin(k|x|)

|x| eikct + k2β(k)sin(k|x|)
|x| e−ikct)
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iff Acos(kct) +Bsin(kct) = Gcos(kct)cos(w)−Gsin(kct)sin(w)

iff A = Gcos(w) and B = Gsin(w)

iff G2 = A2 +B2 and tan(w) = B
A

.

where G is the amplitude of the nerve signal, kc
2π

is the frequency,
both of which are measurable using an ECG. For a typical sodium
channel, we obtain that;

[|x2|sin(k|x1|)−|x1|sin(k|x2|)]
c|x1||x2| Re(α + β)(k) = Gcos(w)

[|x2|sin(k|x1|)−|x1|sin(k|x2|)]
c|x1||x2| Im(β − α)(k) = Gsin(w)

so that;

Re(α + β)(k) = Gcos(w)
θ(x1,x2)

Im(β − α)(k) = Gsin(w)
θ(x1,x2)

where;

θ(x1, x2) = [|x2|sin(k|x1|)−|x1|sin(k|x2|)]
c|x1||x2|

is determined by the positions {x1, x2} of the opposite ends of the
channel. It follows that;

ωx1,k = sin(k|x1|)
c|x1| (Re(α + β)(k)cos(kct) + Im(β − α)(k)sin(kct))

= sin(k|x1|)
c|x1| (Gcos(w)

θ(x1,x2)
cos(kct) + Gsin(w)

θ(x1,x2)
sin(kct))

= Hx1cos(kct+ v)

where;

Hx1 = Gsin(k|x1|)
c|x1|θ(x1,x2)

v = tan−1(Gsin(w)
Gcos(w)

) = w

Similarly;

ωx2,k = sin(k|x2|)
c|x2| (Re(α + β)(k)cos(kct) + Im(β − α)(k)sin(kct))
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= sin(k|x2|)
c|x2| (Gcos(w)

θ(x1,x2)
cos(kct) + Gsin(w)

θ(x1,x2)
sin(kct))

= Hx2cos(kct+ u)

where;

Hx2 = Gsin(k|x2|)
c|x2|θ(x1,x2)

u = tan−1(Gsin(w)
Gcos(w)

) = w

�

Lemma 2.4. Use of Sodium Bicarbonate 2

[NaHCO3] = (c−1)ge
zFEout−µ

◦(T )
RT

1−ce
FzE
RT

where c = e
Fz(70××10−3−E)

RT

returns a membrane potential of E to 70 × 10−3 V, where E =
Eout − Ein.

In particularly, if the membrane potential is 70×10−3+A, we obtain;

[NaHCO3] = (c−1)ge
zFEout−µ

◦(T )
RT

1−c(e
Fz(70×10−3+A)

RT )

where c = e
−FzA
RT

to restore the membrane potential to a resting potential. The mem-
brane potential E can be calculated using an ECG to calculate the am-
plitude of the signal away from the average, the value of Eout at one
side of the membrane can be calculated using Lemma 2.3, knowing E
and the positions {x1, x2} of the sides of the membrane.

Proof. A concentration of [NaHCO3] relative to V will result in an ad-
dition ofNa+ ions on both sides of a membrane channel by [NaHCO3]W ,
with W the volume of the channel. The new concentrations will be
given by;

[Na+]outW+[NaHCO3]W
W

= [Na+]out + [NaHCO3]

[Na+]inW+[NaHCO3]W
W

= [Na+]in + [NaHCO3]
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Using the formula above, we obtain that;

∆Ψnew = RT
Fz
ln( [Na

+]out+[NaHCO3]
[Na+]in+[NaHCO3]

)

= RT
Fz
ln( [Na

+]out
[Na+]in

) + RT
Fz
ln(

1+
[NaHCO3]

[Na+]out

1+
[NaHCO3]

[Na+]in

)

= ∆Ψ + RT
Fz
ln(

1+
[NaHCO3]

[Na+]out

1+
[NaHCO3]

[Na+]in

)

Assuming ∆Ψ = E, with Vout = Eout, Vin = Ein, with a normal
resting potential 70× 10−3 V, we have that ∆Ψnew = 70× 10−3 if;

RT
Fz
ln(

1+
[NaHCO3]

[Na+]out

1+
[NaHCO3]

[Na+]in

) = 70××10−3 − E

iff
1+

[NaHCO3]

[Na+]out

1+
[NaHCO3]

[Na+]in

= e
Fz(70××10−3−E)

RT

iff [NaHCO3] = (c−1)[Na+]out

1−c( [Na+]out
[Na+]in

)

iff [NaHCO3] = (c−1)[Na+]out

1−ce
zFE
RT

iff [NaHCO3] = (c−1)ge
zFEout−µ

◦(T )
RT

1−c(e
zFE
RT )

where c = e
Fz(70××10−3−E)

RT , (7).

7 If we carry out the above calculation using the greater accuracy of the
footnotes above and the formula for µ◦(T ), we obtain that;

∆Ψnew = RT (Fz+1)
Fz ln( [Na+]out+[NaHCO3]

[Na+]in+[NaHCO3]
)

= RT (Fz+1)
Fz ln( [Na+]out

[Na+]in
) + RT (Fz+1)

Fz ln(
1+

[NaHCO3]

[Na+]out

1+
[NaHCO3]

[Na+]in

)

= ∆Ψ + RT (Fz+1)
Fz ln(

1+
[NaHCO3]

[Na+]out

1+
[NaHCO3]

[Na+]in

)

Assuming ∆Ψ = E, with Vout = Eout, Vin = Ein, with a normal resting
potential −70× 10−3 V, we have that ∆Ψnew = −70× 10−3 if;

RT (Fz+1)
Fz ln(

1+
[NaHCO3]

[Na+]out

1+
[NaHCO3]

[Na+]in

) = 70××10−3 − E

iff
1+

[NaHCO3]

[Na+]out

1+
[NaHCO3]

[Na+]in

= e
Fz(70××10−3−E)

(Fz+1)RT

iff [NaHCO3] = (c−1)[Na+]out

1−c( [Na+]out
[Na+]in

)
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�

iff [NaHCO3] = (c−1)[Na+]out

1−c(e
zFE

(Fz+1)RT )

iff [NaHCO3] =
(c−1)√g10

3
2 e

zFVout−kT−P∗V ∗
2RT

3
√
2(1−c(e

zFE
(Fz+1)RT ))

where c = e
Fz(70××10−3−E)

(Fz+1)RT . For the second clause, with a membrane potential of
70× 10−3 +A, we obtain that;

[NaHCO3] =
(c−1)√g10

3
2 e

zFVout−kT−P∗V ∗
2RT

3
√
2(1−c(e

Fz(70×10−3+A)
(Fz+1)RT ))

where c = e
−FzA

(Fz+1)RT .

From Lemma 2.3, we have that;

Vout = Esin(k|x1|)
c|x1|θ(x1,x2)

= Esin(k|x1|)|x2|
|x2|sin(k|x1|)−|x1|sin(k|x2|)

Assume E = 90× 10−3

kw
2π = f

f based on 80 beats/minute f = 80
60 = 4

3Hz, k = 2πf
w = 8π

3w , with w < c

|x1| = 0.5

|x2| = 0.5 + 1
w

Using the small angle approximation for sine;

|x2|sin(k|x1|)− |x1|sin(k|x2|) ' k3|x1||x2|(|x2|2−|x1|2)
6

= k3|x1||x2|(|x2|+|x1|)(|x2|−|x1|)
6

' ( 8π
3w )3.0.52.1. 1w

= 512π3

27.4.w4

= 128π3

27w4

Vout '
9×10−4×0.5× 8π

3w
128π3

27w4

= 81w3×10−4

32π2

F = 105
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A = 20× 10−3

c = e
−FzA

(Fz+1)RT

z = 1

T = 310K

R = 8.3

c = e
−FzA

(Fz+1)RT = e
−105×20×10−3

(105+1)×8.3×310

' e−0.8×10−5

' 1− (0.8× 10−5)

k = R

P ∗ = 54025

V ∗ = 0.2

Using ex ' 1 + x, for x ' 0, we have that;

[NaHCO3] =
(c−1)√g10

3
2 e

zFVout−kT−P∗V ∗
2RT

3
√
2(1−c(e

Fz(70×10−3+A)
(Fz+1)RT ))

' (−0.8×10−5)(3×10
3
2 )e

FVout−kT−P∗V ∗
2RT

3
√
2×(1−e

105(90×10−3)

105×8.3×310 )

' (−0.8×10−5)(3×10
3
2 )e

FVout−kT−P∗V ∗
2RT

3
√
2×(1−(1+15×10−5))

= (0.8×10−5)(3×10
3
2 )e

FVout−kT−P∗V ∗
2RT

3
√
2×(15×10−5)

' 0.1× (3× 10
3
2 )e

105×81w3×10−4−(8.3×310)

2.32.8.3.310π2 − 54025.0.2
2.(8.3).310

' 10× e
810w3

4×106
−2

' 10× e(2w3×10−4)−2

' (0.06× 84× 10× e2w3×10−4−2)g

' (50× e2w3×10−4−2)g

For an acidosis imbalance of D = 2, we obtained (5.5× 10−D)g = (5.5× 10−2)g,
so that;
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Lemma 2.5. If we impose the condition that J = 0 on some sphere
S(0, r0), then, by the above, we can write;

V (x, t) = −4π
ε0

∑
k∈W (α(k)sin(k|x|)

c|x| eikct + β(k)sin(k|x|)
c|x| e−ikct)

J = −(4πc4
∑

k∈W (α(k)(k|x|cos(k|x|)−sin(k|x|))|x|3 eikct+β(k)(k|x|cos(k|x|)−sin(k|x|))
|x|3 e−ikct))x

where W = {k > 0 : tan(kr0) = kr0}.

We have approximately that;

V (λ, t) = −4π
ε0

(α(k0)sin(k0λ)
cλ

eikct + β(k0)sin(k0λ)
cλ

e−ikct)

along the nerve fibre, where k0 is measurable using an ECG, and use
Lemma 2.3.

Proof. If we impose the condition that J = 0 on some sphere S(0, r0),
then, by the above, we can write;

V (x, t) = −4π
ε0

∑
l∈Z≥0

∑
k∈Sl

r0
,k≥0(

α(k)sin(k|x|)
c|x| eikct + β(k)sin(k|x|)

c|x| e−ikct)

where Sl is the zero set of the Bessel function jl. Repeating the steps
of Lemma 2.1 with this condition, we can replace the integral formula
for J by a discrete sum;

J = −(4πc4
∑

k∈W (α(k)(k|x|cos(k|x|)−sin(k|x|))|x|3 eikct+β(k)(k|x|cos(k|x|)−sin(k|x|))
|x|3 e−ikct))x+

c

where;

with (50× (1 + (2w3 × 10−4)− 2) = (5.5× 10−2)

(1 + (2w3 × 10−4)− 2 ' 10−3

(2w3 × 10−4) ' 1

w3 ' 104

w ' 10

The speed 10 m/s seems reasonable for signals propagating in the human body.
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W = {k > 0 : kr0cos(kr0)− sin(kr0) = 0}

= {k > 0 : tan(kr0) = kr0}

Clearly, the vanishing condition implies that c = 0, so that;

J = −(4πc4
∑

k∈W (α(k)(k|x|cos(k|x|)−sin(k|x|))|x|3 eikct+β(k)(k|x|cos(k|x|)−sin(k|x|))
|x|3 e−ikct))x

It follows that, we can also write the potential V as;

V (x, t) = −4π
ε0

∑
k∈W (α(k)sin(k|x|)

c|x| eikct + β(k)sin(k|x|)
c|x| e−ikct), (8).

Translating coordinates if necessary, and approximating a nerve fibre
as a line passing through the origin 0, x = λτ , with |τ | = 1, we have
that the restriction of V along the fibre is given by;

V (λ, t)| = −4π
ε0

∑
k∈W (α(k)sin(k|λ|)

c|λ| eikct + β(k)sin(k|λ|)
c|λ| e−ikct)

= −4π
ε0

∑
k∈W (α(k)sin(kλ)

cλ
eikct + β(k)sin(kλ)

cλ
e−ikct)

(λ ∈ R)

Assuming the length of the fibre is 2r0, we require that V (r0, t) =
V (−r0, t) = 0, (†), for all t ∈ R. We have that, if sin(kr0) = 0 and
k ∈ W , then kr0cos(kr0) = 0, so that as cos(kr0) 6= 0, k = 0, con-
tradicting the fact that k ∈ W . It follows that (†) cannot be satisfied
with the choice of r0 for the nerve fibre and for the vanishing of surface
current. If we consider a small adjustment r1 = r0 + ε, we have that;

sin(kr1) = 0, iff sin(kr0 + kε) = 0

iff sin(kr0)cos(kε) + cos(kr0)sin(kε) = 0

iff tan(kr0) = −tan(kε)

so that if tan(kr0) = kr0, we have that;
kr0 = −tan(kε)

8 This shows that
⋃
l∈Z≥0

Sl
r0

= W
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This has infinitely many solutions for ε 6= 0, but the smallest solution
k0 will dominate the potential along the nerve fibre, so that;

V (λ, t) ' −4π
ε0

(α(k0)sin(k0λ)
cλ

eikct + β(k0)sin(k0λ)
cλ

e−ikct)
�

Remarks 2.6. In order to support the above theory further, one can
perform a spectral analysis of the heart signal using a Fourier trans-
form. There are various programs available for this which use the FFT
(fast fourier transform). The author would conjecture that the spectrum
exhibits sharp discrete peaks.
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