MICROWAVE ENGINEERING
TRISTRAM DE PIRO

ABSTRACT. We give an explanation of charge and current driven
radiation inside waveguides and magnetrons, using the equations
found in [2], and by verifying compatibility with the TM and TE
modes used in microwave engineering.

Lemma 0.1. There exist (p,J, E, B) satisfying;

(i). T2(p) = 0.

(ii). O*(J) = 0.

such that;

p(z,y, z,t) = p(x,y)eik=w

j 5(3:’ y>ei(kz—wt)’ j = (j17j27j3)‘

E =2(x,y)e’t*t & = (e, €9, €3).

o/
=

(m, y)ei(kz_m)y b= (b1, ba, b3).
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In particularly, Mazwell’s equations are satisfied for (p,J, E, B).

We have that there exists a potential V with \7(V) = —E, such that
O*(V) =0 and V = o with V = V' + d(t), where V' is a usual

w?eg’
electric potential. For a given reference point (o, Yo, 20), we have that;

V'(,y,2,t) = Z5=[p(z, y)e™* — p(x0, yo)e*0)e ™!

There exist (0,0, E/,E/) satisfying Maxwell’s equations in vacuum;

-/

(7). v.£E =0

.. =1 B’
(it). v x E = -2
(iii). V. B =0

. -/ You
(iv) v x B = c%aa—btj

E =2 (x,y)e b0 & = (¢}, e, ).
—/

B =1 (z,y)eb= B = (], b, bl).

with B’ #0

Proof. For (i), we have, substituting p(z,y)e!®*=“* for p, that;
[pzx +pyy _ kj2p]€i(szwt) — Cizp(_aﬂ)ei(szwt)
so we require that p,, + pyy + (“;—22 —k)p =0, (x).

The proof that this can be solved in R? will be shown as a special
case of the next lemma. For (iii), we have, substituting p(z, y)elke=wt)
for p, and j(z,y)e'**=“" for J, that;

kz—wt) _ kz—wt)

(p:upy?ikp)ei( —c%(jl,j27j3)(—iW)€i(

so that;

2 Z'CQ

jl - Z%pm - _Upzr
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2 -2
oA ic?
J2 = 5Py = — 5Py

: ci c?

s = SHp = Ep (xx)

If p satisfies (x), differentiating, so do p, and p,, then, from (xx),
the components {1, jo, j3} satisfy (%) and (i¢) is satisfied. For (iv), we
have, substituting again, and using (%), that;
i(kz—wt)

_Z.wpel == _(jla: + j2a: + ]3;1:)

= (Epae o+ Ly + EE )it

so that;

2

2 2.2 .
—“Pex — Py T (kz—j +iw)p=0

W

and multiplying by —%;
UJ2
Doz + Pyy + (c_2 - k2)p =0

which is (*). As all the steps are reversible, we obtain (iv). For (v),
substituting &(z, y)e'**~“" for E, we require that;

Oes _ 4 —
B tkes =0

Oes _ 4 —
5 —ikey =0

@—%:O(***)

oz oy
so that;
— 1 0e
€1 = 3% oz
10
€y = %(%; (% * %)
and we automatically obtain that % — %—e; = 0, as the partial deriva-

tives {2, a%} commute. For (vii), we require that;

Oer | Oez y ;Lo \pilke—wt) _ P ji(kz—wt)
(52 + o + ikes)e =Le
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so that;

de1 | Dex 4 4 - P
Or + Oy +Zk63 T e
and, using (s x s#:);

16263 o '6263 : _ P
k Ox? Oy? + Zk’@g T e

Bl

so that, multiplying by k;

0e; | 02 ik
ot T G — kles =2 (1)

By (v) again, the component e3 has to satisfy;

5+ Gp (5 — K)es = 0 (1)
and, combining (1), (11), we obtain that;

w? _ ikp
c €0

—ikc?
€3 = w];—eop (TTT)
By (* * %), we then obtain (*E = 0, so that (v), (vii) are satisfied.

By (% * *x) and ({1t), we have that;

_ 1y _ 1ok _ &
€1 = ik Oz ik w?e T T w260px
— 18es _ 1 —iké®, _
€2 = i Oy ik w?e Dy = w250py (ﬂ)

For (viii), we require that;

w—,t(kz—wt) __ T oi(kz—wt
_0_2661( z w)__'uojez( z—wt)

so that;
s W
1= e
S 12Y)
J2 = Loc2 €2

o = ey (1)
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Combining (£f) with (8), (f11), we obtain that;

j — w e = w —czpw — _ichw
1 M002 1 M002 wZeg W
. . 2 ;2
s dw . _w —CPy __ TPy
J2 = woc2 €2 = wc? wleg w
— _iw e — iw —ikc?p — kp
J3 Hoc2 2 o wZeg )

which is consistent with (xx). For (vi), set by = by = b3 = 0. The
second claim follows easily by rearranging (v) — (viii).

For the third claim, we have, by (i4i) and (viii), the form of E, that;

_ _1daJ
v(p) 2o
— _ 1 -19E
T 2 g ot2

so that;

2

V(:zp) = -E

Letting V = <& by (i), we have that (*(V) = 0. By (v) and

cow?’
Stokes’s theorem, the electric potential given by;

VI(F)=—[JE.d

for a choice of path Z_from a fixed reference point O is well de-
fined, with (V') = —E. As 7(V — V') = 0, we then have that
V =V’ +d(t). Fix a reference point O = (zo, yo, 20), then, using the

path I(t) = (xo + t(x — m0), Yo, 20), with 7 () = (z — 20,0, 0), the corre-
sponding potential V” at (z, yo, 20) is given by;

Vi) = = [ B

- fol E(xo + t(z — 20), Yo, 20) « (¥ — 20,0, 0)dt
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1 i(kz—w
- fO 61(1‘, y)e * t)lonrt(xf:):g),yO,zo (x - ZL‘Q)dt

_ fol czpz(J?O'LtZ(z;—l'O)vyO)e’i(kZ()—wt) (.T _ .Z'[))dt

— Ep(@yo) yi(kzo—wt) _ P(z0:y0)

w?eg w?eg

ei(kzo —wt)

=V (z,y0, 20) + d(t)

_c 2p(z,y0) z(kzo wt) _|_ d( )

w?eq
so that;

d(t) = _02p(xo,yo)ez‘(kzo—wt)

w2eq

__ Ap(zoo,20,t)
w?eg

and;

2

Vi(r,t) = V(r,t) +d(t) = 555 (p(T,t) = p(O,1))

2 ikz

= o lp(@,y)e

_ p(flfm yo)eikzo]e—iwt
The fourth claim is shown in [3] and [6], solving Maxwell’s equations,
we require that;

/! 7 / /
QO =Z 5 kg(ke?m; +Wb3y)

w
c

&) = gt (keh, — whh,)

/ 7 / w !
bl T W e (kb?)x - c_2€3y)

<2

by = ik, + ek,
63 T + 63 Y (_ - k2) =

3xw+b3yy ( 2 _k2)b =0

C
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The proof that this can be solved in R? with v # 0 will be shown in
the next lemma.

O

Definition 0.2. We call an electromagnetic pair (E, B) resonant, if it
corresponds to a nontrivial charge and current (p, J) satisfying the first
set of equations in Lemma 0.1. We call an electromagnetic pair (E, B)
responsive, if it corresponds to zero charge and current, satisfying the

second set of equations in Lemma 0.1, with B # 0.

Lemma 0.3. Rectangular Waveguide

Given a rectangular wavequide with the cross section having coordi-
nates at {(—a, —b), (—a,b), (a,—b), (a,b)}, then, if the boundary is a
perfect conductor, with E1 = 0 and B, = 0 inside the conductor, we
can find a resonant solution (E,B), inside the waveguide, satisfying
the boundary conditions;

E'=0,B =0

Similarly, we can find responsive solutions (E/, EI), outside the waveg-
wide, satisfying the boundary conditions;

E'=0, B =0

for both the TM and TE modes. In the TM and TE modes of the
responsive solution, for the surface charge and current given by;

9f E/J_ _EJ_
€0

— —

~

po(K ¢ x 1) -5 B
the continuity equation holds in the form;

divKy)+ (T =T).n=-21

Proof. For the first claim, we find a resonant (p, J, E, B) as in the previ-
ous lemma in the interior of the waveguide. Without loss of generality,
we can assume the interior is a vacuum. The boundary condition dic-
tates that e; = e3 = 0 on the horizontal faces and e; = e3 = 0 on the
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vertical faces. As is done in [3], and using the notation in the previous
lemma, this is achieved by the solution;

p(,y) = sin(%3=)sin(54), x| < a, y] < b, {m,n C N}

with —mx - nr® 4 (@ k2) =

a2 b2

Then ez = —ﬁjgjé’ vanishes on all the faces of the waveguide, while;
e = _wCQ_Qeopx = —wi—;%cos(“?z)sm(%w)

€r = ——5-p, = — 5 Tsin(T22)cos( L)

vanish on the horizontal and vertical faces respectively, as required.
Clearly B+ = 0 on the boundary as b; = by = by = 0.

For the next claim, the boundary condition dictates that e] = e =0
on the horizontal faces, €, = e, = 0 on the vertical faces, b}, = 0 on the
horizontal faces, b = 0 on the vertical faces. We can achieve this with
the TM (transverse magnetic) mode, defined bys;

ey, y) = sin(2)sin(L), [¢] > a o y| = b, {m.n C N}

2 2.2 2

with —m0 - wr® (@ |2) =

a b2

and b4(z,y) = 0. From the equations of the previous lemma, we
must have that;

Y = —w
1 Cz(ch?' k2) 3y
/ w /

b2 - 02(w2 k2)€3:17

Clearly, e} vanishes on the horizontal and vertical faces, while e,
vanishes on the horizontal faces and ej, vanishes on the vertical faces,
so €} vanishes on the horizontal faces and e/, vanishes on the vertical
faces, and similarly, b}, vanishes on the horizontal faces, b} vanishes on
the vertical faces. Note that b # 0, so the solution is responsive.
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We can also achieve the boundary condition with the TE (transverse
electric) mode, defined by;

[
e; =0

by = cos(™%)cos(TY), |x| > a or |y| > b, {m,n C N'}

a

2 2

— I (5 k) =0

c2

3 m27r
with —77
From the equations of the previous lemma, we must have that;

W /
61 — ﬁ,]@ b3y

c

/o —lw )
€2 = %%gb:m
C
/o ik !
bl - %_kgbsx
(&

b/ _ ik !

2 7 w2 3
k2 Y

(&

Clearly, e} vanishes on the horizontal and vertical faces, while bj,
vanishes on the vertical faces and b3, vanishes on the horizontal faces,
so €} vanishes on the horizontal faces and ¢/, vanishes on the vertical
faces, and similarly, b}, vanishes on the horizontal faces, b} vanishes on
the vertical faces. Note that b # 0, so the solution is responsive.

For the resonant field, we have that;
pe = Ttcos(TIE ) sin ()
py = Tsin(TE)cos(THY)

and for the responsive field in the TM mode;

’

)sin(=)

mm'z
a

;o mm/
ey, = Ta-cos(

(7T’ITLIJS

a

’

)cos(TY)

ol
€3, = T-sin

so that, for the TM mode;

of _ vl _ ol
L= E'-E
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= (—ey + €))e™*=%!) (on the horizontal faces)

c? ik
= [ 2. Py + —
weeQ %_k2

c

kz—wt)

egy]ei(

2 N oo ( TMT i ™m n oioy (T T i(kz—w
:[W2EOT(_1) sin (™) + %kaT(—l) sin( )]eithz=wt)

_ (_1)n7r_g1[wc2260 + %ika]SinU?;w)ei(kz_wt) (m=m',n=n')

and;

= (—ey + €})e'**=%!) (on the vertical faces)

_q.c? ik
o [uﬂeopaC + w2
2

! i(kz—wt
k2 63x]€ ( )

= | io%(—l)msin(%) kT () g (T ] gilke—w)

= (~L)mE s + s sin(T)e 0 (m = m'in = )

and;

(K x7)=B" - B

= [ (by, b3) + (b, b)]e**=%") (on the horizontal faces)
= 10.0) + (0 0=
— (b/17 0)€i(kz—wt)

— (_ iw 1 i(kz—wt)
- ( C2(wi_k2)€3y€ ’0)
2

= (~ kg B (1) sin(g)e =0 0)

so that;

oKy = (0, %”—;(—1)%@'71(“7%)@(%@))

and;

po(K p x 1) = [—(by, b3) + (b, by)]e’ =<t (on the vertical faces)
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[(0,0) + (b, 0)] e’ ==
— (blzei(lcszt)7 0)

— iw 1 i(kz—wt)
= €5 € 0
(c2<“g—§—k2> 5 0

:( iw 7rm( 1) sm(Ty) z’(kz—wt)’o)

(45 —k?) @
so that;
oK = (0 i—wm(—l)msin(%)ei(’“_w”)

T —k2)

c

11

By the continuity equation on the boundary, see [1], we must have

that, on the horizontal faces;

div(Ks)+ (T =T). 0

=div(K;)—J.n

= div(K ) — jpeitk=et)

= div|(0, oGy (= )" sin(FE)e )] 4

. iw ™m ama i(kz—w i
=tk T () sin(FE) e+ (1)

. W ic? nwn mmz \ ,i(kz—w
- [ZkuocQ(%ka) + ] (= 1) sin (e el
do s
T ot
nmn[_c* 7 mmx \ ,i(kz—w
= G (eo(—1)" B[ + g lsin(ZmE)eithew0)

;2 .
1C"Py 1
w

nmn

b

e

T sin (T

(kz—wt)

™Tmx )

el

i(kz—wt)
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— g C
= iweo (5

wkeg 7,c
—k2 +

By the continuity equation on the boundary again, we must have
that, on the vertical faces;

div(K;)+ (T =J).n
=div(K;) —J i
= div(K ;) — jiettk==eb

; iw wm M gin (T i (kz—w ic?ps i(kz—w
= dZU[(O, WT(—l) Sm(Ty)e (k t)>] + Tpe (k t)

= ik () sin T I () s (T e
= [zk’L + ﬁ](—l)m”mszn(%)ei(’”*‘“t)

2
poc2 (5 —k2) w

= — B e~ 1) IR [ + S sin(T)eitke)

ot o2 Y
= dweg( l)m%[wfeo + wgzk Jsin(™)e i(kz—wt)
= liweo( g + )] (~ 1) sin( Tl
so that;
= u;;kfzz _i_if

2
w3e w2 k2
2
_ wkeg + iC
ws 2 w



MICROWAVE ENGINEERING 13

For the responsive field in the TE mode, we have that, for m =
m',n=n';

by, = —"sin(™2)cos(THY)

bgy = -1 cos(“m””)sm(%)

so that, for the TE mode, with m = m/,n = n/;
9f E/J_ _ EJ_

€0

= (—ey + €h)e™ =% (on the horizontal faces)
ng]ei(kz—wt)

c? W
= lar — =%
:[ c? M(—l) Szn(wmw)+ Ziw m(_1> Szn(m;‘w:)] i(szwt)

w?eg b w? 2 a
C

nf_ ¢ 7n w mmx \ ,i(kz—w
= (~1\ [ + i R sin(Zmehe

ﬁm‘ Em

and, for m =m/,n =n’;
Z—g = (—ey + €})e!™* =) (on the vertical faces)

:[wg_;p$+ b/] i(kz—wt)

2 mm ™ W —Tn M iy (TN i(kz—w
= [FZ (- 1) sin( by)Jr%_kQT(—l) sin(T)]elth==«t)

= (DT - g Bl (e

c

We have, on the horizontal faces;

po(K p x 1) = [=(br, bs) + (by, by)Jeih=="

[(0,0) + (&=

b, cos(F2)cos(732) el

C

= (%iﬁkﬂ SI g (T ) o (T ), cos(TIE ) cos( L)) (ke )

= (w;ika (_1)n7rm$2n(7rmx)7 ( 1) Cos(ﬂmx))ei(kz—wt)
o

so that;
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oK ;= ((—1)"cos(=22), = (1) sin (=2 )ei(h=—0)

We have, on the vertical faces;

HO(Ff X ﬁ) = [—<bg, bg) + ( /2’ bg)]ei(kz*“’t)

[(0,0) + ( ik L,» cos (T )COS(%))]ei(kz_“t)

k2
= (%ZTka Teos(TE)sin (), cos(“m“)COS<WZy))€i(kz—wt)
k

= (g (1) sin(T2), (—1)cos (T2 ) el themn

so that;

;LOFf = ((—1)m+lcos(%w), wj_ik M(—l)msin(%))ei(kz_“’t)

By the continuity equation on the boundary again, we must have
that, on the horizontal faces;

div(Ks) + (T —T) it
=div(K;)—J.n
= div(K ;) — jye'tkz=t)

-1 ; 1 T P2 o
= dzy[ ) COS(ﬂmz) Z’L_kﬂ'm =" SZn(ﬂm‘T)] i(kz—wt) + 1Py ez(kz wt)
Twl k2 a Ko w

= [Csin(ee)mg S Gl sin (232445 (< 1) P sin (232 el
_ [_ﬁ . k2k2% + %%]( 1) S’Ln(ﬂmx) i(kz—wt)

_ Ooy

- ot

= g (eo( )" T+ g T lsin (T el )

c

= [ZLUEO(wCeOM + %slikz%)]( 1) Sln(ﬁmx) i(kz—wt)

so that;

_mm _ _k* mm +ic27rn
Hoa 7“’22 —k2 Hoa w b
C
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_ W’ mm + ic2

T w2 2 oa w b

62 k
s 2 7w W mTm
= ZWEO(W%OT + “’—22—1@7)

c

ST T
By the continuity equation on the boundary again, we must have
that, on the vertical faces;

div(K;)+ (T =T). 0

A

n

= dlU(Kf) — J

= div(K ) — jiettk==wb

N Y G Dl any\ _ ik wn (CD™ o cmny ] i(kz—wt) | i¢?pe i(kz—wt)
= div[*—, —cos("¥), Z_2 b o sin("4)]e +=Lre

-ym . rmny\mn | tk(=tk) on (=)™ _. /7n ic? mmTm ;. (TN i(kz—w
= [ sin(F) T+ G B S sin(B)+ 40 (= 1) i (S ek

c

= [+ o TR sin( el

— —%(60(—1)"1[ c22 mm w2iwk2 %]sin(u)ei(kz—wt))
o —

w?ep a

n
b
= [l 52 = T () sin( ek

so that;

™m k2 wn ic2 ™m
wob %_;@ pob w a
(&

— _ 2 mn g icdmm
w? 1.2 piob w a
2

w2eg mn ic2 mm
w2 _p2 b w a

2 2 .5 B
w?en a w=_ 12 b
0 c2k

( 2 mm W ﬂ'n)



16 TRISTRAM DE PIRO

Definition 0.4. For (k,w, m,n) with;

_m227r2 _ n?r? + (w_22 _ k2) =0

a b2 c

we denote by (Ek,w,m,n,ﬁ) the resonant solution found above in the

interior of the waveguide, and by (E;’wﬁmvn,gévwﬁmm) the responsive so-
lutions found above in the TM and TE modes.

Lemma 0.5. Cavity Magnetron

Given a cavity magnetron with the corners having coordinates at;

{(—CL, _b7 d): (—CL, b? d)7 <a7 _b7 d), (a, b, d)> (—CL, _b7 _d)7 (—CL, b7 _d>> (CL, _b7

then, if the boundary is a perfect conductor, with El_zg and By =0
inside the conductor, we can find a resonant solution (F, B), inside the
magnetron, satisfying the boundary conditions,

E' =0, Bt=0

Similarly, we can find responsive solutions (E,,El), outside the mag-
netron, satisfying the boundary conditions;

El =0, Bt =0

for the TM mode. In the TM mode of the responsive solution, for
the surface charge and current given by;

gf — EIJ_ o EJ_

€0

wo(Exi)=B"-B

the continuity equation holds in the form;

div(Kp)+ (7 —T).n =21

Proof. For fixed m,n € N, in the interior of the magnetron, we let;

(Eu 6) - (Re(Ek,w,m,n - Ek,—w,m,n>7 6)

—d), (a, b,

—d)}
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and in the exterior of the magnetron, using the TM modes, we let;

!/

(E,7 E ) (Re(Ek w,m,n + E;c,—w,m,n) Re(Bk’ w,m,n + Ek,—w,m,n))

We let;

(E*, 6) = (Ek,w,m,n - Ekz,—w,m,nu O)
e D— — — — —

(E 7B ) = (Ek,w,m,n + Ek,—w,m,n’ Bk,w,m,n + Bk,—w,m,n)
Using the calculation in Lemma 0.3, we have that;

p(x; Yy, =z, t) = Re(pk,w,m,n - pk,fw,m,n)
Re(sin(™22) sin( T2 )e! M=t — gin(TRL)gin (T )elkztwh)

= Re(2sin(™2%)sin(™32)(sin(kz)sin(wt) — icos(kz)sin(wt)))

mmax

= 2sin (™% )sin(Y ) sin(kz)sin(wt)

€1 (xy Y, =, t) = Re(el,k,w,m,n - el,k,w,m,n)

= R€( pkwmnx + Pk,—w,m,n,m)

w2 €0

- w2€0 Re(ﬁk W, m,n,x pk,—w7m7n,m)

2
= _wZ_GOpx(xy Y, z, t)

= 0.122660 Meos(™)sin( ™3 )sin(kz)sin(wt)

€9 (I’, Y, z, t) - Re(€2,k,w,m,n - e2,k,w,m,n>
= Re( wzeopkwmny + w22 Pk, wmny)
wzeo Re(ﬁk w,m,n,Y Pk,—wmm,y)
2
= _wcz_eopy(xa Y, z, t)
2¢2

= — S5 sin( e )cos(Fpt ) sin(kz) sin(wt)

so that, with the choice k = =%, r € N, r = 1/, we have that

e; = eg = 0 on the far faces, defined by z = d and z = —d, so that



18 TRISTRAM DE PIRO

E' — 0 on the far faces. As B = 0, we have that B+ = 0 on the far
faces as well. By linearity, and taking the real parts, we can use the

calculation of Lemma 0.3, to see that E' =0 and B+ = 0, on the
vertical and horizontal faces as well.

Using the calculation in Lemma 0.3, we have that;

1% o /
€3 (.’L’, Y, <, t) — e3,k,w,m,n + eS,k,—w,m,n

sm( mx )Sin(ﬂTny)ei(szwt) + SZTL( Tmex )Sin(ﬂTny>ei(kz+wt)

= 2sin(™2%)sin("3Y) (cos(kz)cos(wt) + isin(kz)cos(wt))

6/1 (.Z', Y, =, t) = Re(ell,k,w,m,n + ell,k,w,m,n)

ik /
- R@( w22 k2 63 k,w,mmn,z + 5 _k2 e3,k,—w,m,n,x)

c

= %@Re(i(eg,k,w,m,n,x + eé,k,fw,m,n,x))

2

= ' Reiey, (v,y.2,1))

c

= e Re(2sin(=22) sin(™2) (icos(kz)cos(wt) — sin(kz)cos(w)).

w_
2

= o7 reos(TE ) sin(TY ) sin(kz)cos(wt)

€9 (ZL’, Y, =, t) = Re(eé,k’,w,m,n + eé,k,w,m,n)

ik
k2 3kwmn,y+ w?
2

:Re( ik

/
—k2 637k77w’m’n7y)

- ﬁRe(Z(GS,k,w,m,n,y + eé,k,—w,m,n,y))

c

:%'ikQRe(iegjy(x,y,z,t))
= Re(QSm(”m’”)sm( ) (icos(kz)cos(wt) — sin(kz)cos(wt)))y

L
2

= LQWZQ sin(™ ) cos(TY ) sin(kz)cos(wt)
C

so that, with the choice k = =, r € N, r = r', we have that
e} = e, = 0 on the far faces, defined by z = d and z = —d, so that

E" =0 on the far faces. By definition of the TM mode, linearity and
taking the real part, we have that by = 0, in particular, we have that
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B+ = 0 on the far faces as well. By linearity, and taking the real parts,
we can use the calculation of Lemma 0.3, to see that E/H =0 and

B = 0, on the vertical and horizontal faces as well.

As verified in Lemma 0.3, we have that the pairs;

(Ek,w,m,n7 67 E;{;

—
w,m,n’ Bk,w,m,n)
E 0.E, B,
( k,—w,m,na()? k,—w,m,n> k,—w,m,n)

satisfy the continuity equation at the boundary of the vertical and
horizontal faces, for the associated free charges and currents (pfk w.mns J fkwmmn)
and (pf.k —wmmns J f.b,—wmmn), SO that, by linearity, so does the sum;

—_— J— — — — —/ -/

(Ek,w,m,n + Ek,—w,m,ny 07 Ek,w,m,n + Ek,—w,m,n? Bk,w,m,n + Bk,—w,m,n)
—% — — —/x —=/%

= (E + 2Ek,—w,m,na 0, E ) B )

for the induced free charge and current;

(Pt wmm + Priwmms I fkwmmn + J fk—wmn)

We claim that (2E% _u.mn, 0,0,0) satisfies the continuity equation,
(%), for the induced free charge and current;

Pf _ nL _ 1

€0 - O 2Ek7_w7m7n
_ 1

pf - _2€0Ek,—w,m,n

po(Jpxi)=0'-0'=0
7, =0
The continuity equation is given by;

. —/ - N 13)
div(Jyp)+(J —J).i=—5L

where J' = 0, so, by the above, we have to check that;

d(—2¢eo Fit )

k,—w,m,n

_2Jk:,—w,m,n N= = ot
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which follows from;

J— 8Ek _ —
Jk,—w,m,n + € ,8;,m,n =0

This follows from Maxwell’s equations and the fact that B = 0 inside
the magnetron. Hence () is shown, and, by linearity, = (E_,0, E", EI*)

satisfies the continuity equation at the vertical and horizontal faces.

For the far faces, we have that the free charge oy induced by {EI*, E"}
is given by;

o _ prel _ pel
0

— (e}, gilkz—wt) | gy eilketut)) (g eilkewt) _ g, cilkztuwt)

— (e}, — R (¢ho + e3,_,)eiheten)

= (=) e™™!(eh,, — esw) + (=1)7e™ (€5, + €3-0) (k=)

= (—1)"e ™ (sin(™2)sin(T2) + ihepy 4 (—1)"e™*(sin(™2)sin(H2)

w?eg

. ikc?p )
w?eg

= 2(—1)"cos(wt)sin(™*)sin("52)—2(—1)"isin(wt) 25 ikc? 2 i (72 ) s (<L)

= 2(—=1)"sin(™=)sin("52) (cos(wt) + 2 he” —sin(wt))

= 2(=1)" (1 + £3%) 2 sin(™22 ) sin( T )sin(wt + ¢)

2
where tan(¢) = 45

while the free current, Ff is given by;

oy x i) =B 5 — B
(b/1w7 )ei(kz —wt) (bll o é,_w)ei(kzﬂjt)

_ i i(kz—

— (_CQ(L%wikQ)egyj CZ(L%wikQ)egm)el( z—wt)

C
] ] i(kz+wt)
+ iw el iw el ez(
(62(%22—’?2) 3y7 CZ(L;—I?Q) 3%)

c
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- (_1)T(_ cg(éw_kg) eéy? cz(éw_kz) eéx)e_th

c

_1\r W r iw / iwt
+( 1) (CQ(%ik2)€3y7 2 WiszQ 6396)6

2
= 2i(—1)"sin(wt) 5—¥—/(e4,, —€h,)

=2(=1)"sin(wt) —5—
so that;

poK p = 2(—1)"tsin(wt) ——g—— (T2

= 21" sin(wt) ot (— Ecos(Z22 ) sin( ), B sin(Z22) cos(Z32))
(T —

We have that, on the far faces;

i(kz—wt)

— _(jS,we ( 7 kz—l—wt))

- j3,7w€ (

_ ( c2kp eilkz—wt) 4 kp ei(kz-i-wt))
w w

— (_1)r+1%(67iwt + 6iwt>

= 2(—1)"" cos(wt) Sk sin (TR ) sin (L)
so that, for the continuity equation, we have that;
div(K;)+ (T =T).n

T - 7T2 2 7T2n
=2(-1) sm(wt)#og(:”i_kz)( - 4 T ) sin (T2 ) sin ()

+2(—1)r“cos(wt) Egin (™) sin(THY)

_ 99y
ot

= —2(~1) esin( T ) sin(722) & (cos(wt)

n(wt))
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= 2(—1)"eqwsin( ™) sin( T2 ) (—sin(wt) + f;:o cos(wt))

so that;

2.2 2,2 2],
Hoc2(%7k,2)<ﬂagl + ﬂ-bgl ) - COS(Mt)CT

= sin(wt)—%— (% — k?) — cos(wt)c%k

sin(wt)

“002(%,k2) c?
= sin(wt) 25 — cos(wt)‘%k

= sin(wt)eow — cos(wt)ci—k

= —eqw(—sin(wt) + jfjo cos(wt))

as required.
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