A FOURIER INVERSION THEOREM FOR NORMAL
FUNCTIONS

TRISTRAM DE PIRO

ABSTRACT. This paper proves an inversion theorem for the Fourier
transform defined in [2], applied to the class of normal functions.

We recall the definition of the Fourier transform for quasi split nor-

mal functions, which includes normal functions, introduced in the pa-

per [2], normalised by the factor ;- in dimension 2, and by —5 in

2T 27_(_)§
dimension 3, which we denote by F. The aim of this paper is to prove

an inversion theorem for such functions. We first have the following;

Lemma 0.1. Let f : R?> — R be smooth and quasi split normal, then
F(f) € LY(R?) and is of rapid decay, in the sense that, for |k| > 1,
kl 7£ O) k2 7£ 0

F(HE) < 2

k|

where C,, € R, n € N.

A similar result holds for smooth quasi split normal f : R? — R,
with F(f) € LY(R?), and for |k| > 1, ky # 0,ky # 0, ks # 0

IF(f)(F)|

where Cp, € R, n € N.

n
‘ n

VAN
§\|Q

Proof. In dimension 2, by [2], we have that integration by parts is jus-
tified, for k1 # 0, ko # 0, and we obtain that;

F(72 () k==K F(f)(k)

F((72)"f) = =k>F(f)(k) (+)
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By the definition of quasi split normality, (%)™ f is of moderate de-
crease 2n + 1 and smooth, so that for n > 1, (v*)"f € L'(R?), and we
have the trivial bound;

F(2)r )] < W ws _

— 2

Rearranging (), we obtain that, for [k| > 1, k; # 0, ky # 0;

F (k)] <

?r|(‘)

§ e for 1 < m < 2n.

The proof for f: R* — R is similar, noting that (/?)"f € L'(R?),
for n > 2, and repeating the argument in three variables.

We have that, by the definition of quasi split normality, for f :
R? — R, {%, ?)_5} are of moderate decrease 2, and smooth, so belong
to L%(RQ). By the Haussdorff-Young inequality, using the fact that
1 < 3 < 2, we have that {F(ai),}"(g—z)} C L3(R?), in particularly
{]—‘(%) ( ) |J’:( )]—l— ]f( )|} C L3(B(0,1)). A simple integration
using polar coordmates, shows that + € L2(B(0,1)). As above, we
have that, for k; # 0, ks # 0;

= _ FOH® _ FEH®
F(HE) =120 = Zar ()

iko
Observe that;
111 11
k |k k2.1 7 |k k2. 1
[k (14+:3)2 [k (1+)2
1 2
and;

1§(1+:—§)% < V2, for |ky| < |ki|

so that Ik\ < f , for k| < \kl\ | 2, for k| < |ksl, the cases

<
being exhaustive, ( ). Combining (A ) (B), we obtain that;

F®] < V2IZED for [y < [
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_ F of %
FH®| < V222D for [ky| < [k

maa(|F(3DBLIF (S )
IF(F)] < V2 = 7

VA(FGH®HFEH®))

< k

By Holder’s inequality, we have that;

V2(IF (8L )(k)k\+|7-'( Ly®)) e LY(B(0,1))

so that F(f)(k) € L*(B(0,1)). By the rapid decrease of F(f), for
|k| > 1, we have that F(f)(k) € L'(R?\ B(0, 1)), so that F(f)(k) €
LY(R?).

For f : R® — R, {%,g—;,%} are of moderate decrease 2, and

smooth, so belong to L?(R?), and by classical theory;
{F(3D), F(GD, FEDIFGDI+ IFGDI+IFGDI € LA(R?)
as well. In particular;
{F(G), F(E0), F(ED). |F (G + [F(E)I + |F (G} € L*(B(0,1))

A simple integration using polar coordinates, shows that 1 € L*(B(0,1)).
As above, we have that, for ky #£ 0, ko #£ 0, k3 # 0;

— of Of\(E Of V(%
]—"(f)(k:) F(SD)(®) _ F(Qy)(k) _ F(az)(k) (AA)

ik1 iko ks

Observe that;

3= 21 Pl =L 21 2 =L 21 2
ot Plagedt Mlagem?
1 1 2 2 3 3
and;
K2 k21
1< (1+ k—é + é)2 < /3, for max(|kil, |ks]) < |ka|
k3 | k2\1
1< (1+ k—% + éﬁ < /3, for maz(|ksl, |ks]) < |k

2 1
1< (1+3+ @)5 < V3, for max(|kyl, |ka|) < |ks|
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sothatﬁg for max(|kal, [ks|) < [k, 757 < %2, for maz(|ka |, [ks]) <

|kal, |k3‘ < ¥ ¥3_for max(|ky|, [ka|) < |ks| the cases belng exhaustive,

(BB). Combining (AA), (BB), we obtain that;

_ A\
IF(H )| < V3IZZD for maz(|kyl, |ks]) < |kl

_ ]:ﬂ &
IFH @] < VBIZ2 N for ma ([, [ks]) < ko]

F®] < VIIZED for maz((kal, [kal) < [ks

- maz(|F(5L)R)LIF (G ®)IF (5D R))
\F(f)(k) <3 . =

VBIFCH®HFEH®HFEDH®)

< z

By the Cauchy-Schwartz inequality, we have that;

o _
VA ><k>\+|f<’f OHZEIED ¢ r1p(m, 1))

so that F(f)(k) € L*(B(0,1)). By the rapid decrease of F(f), for
k| > 1, we have that F(f)(k) € L'(R?\ B(0, 1)), so that F(f)(k) €
LY(R3).

]
Definition 0.2. Let f € C*(R?) be quasi split normal with %
bounded for 0 < iy +iy < 27. Let C,, = {(z,y) € R*: |z| < m,|y| <

m}. Let;

Qn=R*\(r=mUz=-mUy=mUy=—m)

CBImM(R2) = {h: 8‘955?2 ,0 <i,j <13, define continuous functions,

i+14 i+14 . . .
(%i—aylhzl’ &Tagi,o <1 <13, define bounded functions on Q,}

Then we define an inflexionary approzimation sequence {fm, : m €
N} by the requirements;

(l) fm c Cl3,14,m(R2)
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(iit) fulmorc, . ) =0
m2
Letting g,, =

1 19,
fm | [=m,m]x [—m—m,m—km] ’

(). For |z| < m, for 0 <i<13;

9'gm _9f

8yi (I,m) - 8y1 (x,m)
9 81f

oyt (=, —m) — oyt |(x,—m)
o4 _

8yi ("L‘:m+%) o 0

aigm —

oy l(@,~m-1) =0

(v). For|z| <m

814f 8149
f6y14|zm >O7 aylz;n R >0

14
fgy1£|mm <O; Ay 14 ‘Vzm SO

. 814 814 m
Zf Wl{kl’,—m) > 07 8y§]4 |Va;,77n Z 0

14 14
Zf gym < 0; aay%nh/z —m S 0
The same property as (iv), (v) holding, replacing f and g, with 2
and 89’" , for 0 <i < 13.

ox?

81‘7‘

(vi). For |yl <m+ -5, 0<i<13

B () = 52 )
% (=myy) = % (=m.y)
88i£7in (m+Ly) = 0

8&35:;” (—m—2%y) — 0

(vii) For |y| < m+ #
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. 6149 814f
Zf ax1£n|(m,y) > 0; axlln’Hm,y > 0

O fn

. 614 m
if Gt my) <0, G|, <0

814 gm 814 -
Zf Szt |(—m y) > 0; 333{4 |H >0

. 814 m 614 ™
Zf 833%4 |(7m,y) < O; ax{4 |H,my S 0

The same property as (vi), (vii) holding, replacing f,, and g,, with

a(;i;" and agm , for0<i<14.

where;

Vom ={(z,y) e R?* 1y € (m,m+ =)}
Vem ={(z,y) € R? 1y € (—m — -, —m)}
Hpy={(z,y) e R* 1z € (mm+ 25)}

H ,,={(z,y) e R* 2 € (—m— 25, —m)}

Definition 0.3. Let f € C°°(R?) be quasi split normal with %

bounded for 0 < iy + iy + i3 < 40. Let Cp,, = {(z,y,2) € R? : |z| <
m, |yl <m,|z| < m}. Let;

Qn=R3\(zr=mUz=-mUy=mUy=-mUz=mUz=—m)

C13A3Mm(R3) = (I %, 0 <1i,5,k <13, define continuous functions,

Hititlap gititlap gititlay .. . .
eI BaidyTasT datTagiger 0 < 6,5 < 13, de fine bounded functions on Q,}

Then we define an inflexionary approrimation sequence {fm, : m €
N} by the requirements;

(Z) fm c 013’13’14(R3)
(i), fmlc, = fle.

(#i1) fml®a\c =0

Gl
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(). For 0 < |y <m,0<|z| <m, for 0 <i<13;

% (m.y,2) — % (m,y,2)
% (—myy,2) = % (=m.y,z)
at;ﬁln |(m+$,y,z) =0

B ey =0

(v). For0 <yl <m,0<|z| <m
14 14
Zf gCC14 ,y,z) > 0 61{T|Hmyz 2 0

814 814 .
f 7:‘/72) < 07 L |Hm,y,z < 0

dy 14 Jxll >~
814 814 .
Zf 8y14 —m,y,z) > O; 81—{4|H7m,y,z Z 0

o4 o4
f 6y1£| (—=m,y,z) < O; awﬁn‘H_myz <0

(vi). For0<|z|<m+ 25 0<]z[<m, 0<i<13

alfm| (zy,2) — 8me| (z,m,z), T <y< m+—

agyi (z,y,2) = 8(;7 (z,—m,z); — M — % <y<—m
S (zm+Ly,2) = 0

Ol sy =0

(vii) For 0 < |z] <m+ -5, 0<[z[ <m

Zf 14 |(a:mz) > 0 8y14 |mez >0

814fm

. 814
if Wﬁnkx,m,z) <0, WWI’W <0

614f 614f
Zf 8y11n‘(x,fm,z) > O; 8y11n‘Vl7_m,z 2 0

0 oM fm
Zf 14 |(z,—m,z) < 07 dyl4 |Vx —m,z <0

(viii). For0<|z|<m+ L 0<|y|<m+ %5, 0<i<13
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Bi m ai . 1
2 @) = B gy, m <z <m+ s

0" fim O fm )

8; (x,y,z) - 8_; (I,y77m); —m — m S ya S E—
9" fm —0

9zt (zy,m+—x)

& fm B

0z* (Ivyvfmfﬁ) - O

(i) For 0 < |z|<m+ X5, 0< |y <m+ 25

Zf 14 |(:L‘,ym) > 07 3214 |nym >0

14 14
a fl 7ym <0 g fm|Dz,y,m SO

8 14 9214
3 _614 814 m
4 8z1£|($7y,—m) > 07 33{4 Dgy—m >0

814f 614fm
f 8z14| (z,y,—m) < O; W|Dm,y,,m < 0

where;
Hyy = {(2,9,2) € R3:x € (m,m+ #)}

Hfmy,z = {<x>ya Z) € Rg LT E (—m — Lg’ —m)}

)

‘/zmz:{<x7y7z> GRBZyE (m7m+$)}

3110y

Vomz=1{(r,y,2) e R?:y € (—m — L —m)}

Daym = {(2,9,2) €R?: 2 € (m,m + 7))}

Dx,y,—m = {(x,y, Z) € R3 - 2 c (—m — =3, _m)}

We now address the issue of the construction of inflexionary approx-
imation sequences in the 2 and 3 dimensional cases.

Lemma 0.4. The results of Lemma 0.5 in [3] hold, replacing the in-
tervals [m, m + L] with [m,m + 25| and [m,m + —5].

Proof. In the proof of Lemma 0.5 in [3], observe that the coefficients of
the polynomial p, depend only on the % term, so we can obtain the new
coefficients for p by substituting m? or m? for m. We then calculate in
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the # case, that;
h"(x) = (=360agm!® + O(m'?))x? + (288agm'® + O(m!®))x
+(—=36agm?* + O(m'?))
which has roots when;

— a — apm!® m!0
.~ 288_07—;(/)%1;6153_0(77;%( L — O(m3) + O(m) > 0

Clearly, we can then assume that for sufﬁciently large m, h"'(z) has
no roots in the interval [—m——5]U[m, m+ L-]. For the final calculation,
with |h][m 4+, We can replace m by m? throughout the proof, to get

the same result, that |h,, +-,1 < C, independently of m > 1. The case

with m? replacing m is left to the reader. U

Lemma 0.5. If[a,b] C R, with a,b finite, and {g, g1, g2} C C*([a, b)),
then, if m € R is sufficiently large, there exists h € C*([m, m+—5] X
la,b]), with the property that;

h(may) = g(y)7 %‘(m,y) = gl(y): 8x2’ (m,y) — QQ(y); Yy e [&7 b]; (Z)
him+ Ly) = LZ(m+ L.y) = 2h(m+ L.y) =0, y € [a,b], (i)

|h|[m,m+ﬁ]><[a,b]| <C

for some C' € Rsq, independent of m sufficiently Zarge, and, if

&h(m,y) > 0, Lh(z,y) > 0, for x € [m,m+ L], and if 22 (m,y) <0,
O3h

Sh(z,y) <0, for x € [m,m+ 23], (x). In particularly;

f |am3 ,y)|dx = |92(y)|

Moreover, forie N, & oy b has the property that;

i i+1 i i+2 7
28 (m,y) = 990W), Grillimg = 9" W), Lats|may) = 95" ()

y € la, 0], ()

) i+1 i+2
Sh(m+ iz, y) = St (m+ 2, y) = 2l (m+ 5,y) = 0
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€ [a,b], (it)

9'h
Ayt |[m,m+ 2]>< [a,b]

| < C;

for some C; € R>0, independent of m Suﬁﬁczently large, and, if

68:;;;;”( y) >0, aayzag;ii(w y) >0, fOT‘l’ € [m, m+.- s ] and Zfa 18$3(m y) <
0, Bagjj&?i"( y) <0, forx € [m,m+ ], (xx). In particularly;

m+—y | gits i
S | 2 | ldz = 198 ()]

Proof. For the construction of A in the first part, just use the proof
of Lemma 0.4 and Lemma 0.5 in [3], replacing the constant coeffi-
cients {ag, a1,a2} C R with the data {g(y), g1(y), g2(y)}. The prop-
erties (i), (i¢) are then clear. Noting that [a,b] is a finite interval
and {g, 1,92} C C*([a,b]), by continuity, there exists a constant
D, with maz(|g(y)|, |91 ()], 192(w)| = y € la,b]) < D, so, as in the
proof of Lemma 0.4 and Lemma 0.5 in [3], we can use the bound C =
16D + 7D + D = 24D, for m > 1. The proof of (x) follows uniformly
in y, as in the proof of 0.4 and Lemma 0.5 in [3], for sufficiently large
m, again using the fact that the data {g(v), 1(y), 92(v) : y € [a,b]} is
bounded. The next claim is just the FTC again. For the second part,
when we calculate 2 3 , for : € N, we are just differentiating the coeffi-
cients which are hnear in the data {g(y), g1 (y), 2(y)}, so we obtain a

function which fits the data {g ' ( ) gi (), 98 (1)} and (i), (ii)' follow.
Noting that, for i € N, {gC ,g% ,92 } C C"O([a b]) agaln by continu-
ity, there exists constants D;, with maz(|g® (y)], [¢\” (y)], |95 0 (y )|y €
la,b]) < D;, so, again, as in the proof of Lemma 7?7, we can use the
bound C; = 16D; + 7D; + D; = 24D;, for m > 1. The proof of (%)
follows uniformly in y, for each ¢ € N, as in the proof of Lemma 0.4
and Lemma 0.5 in [3], for sufficiently large m, again using the fact that
the data {g (y), gii) (v), géi) (y) : y € [a,b]} is bounded. The last claim
is again just the FTC. U

Lemma 0.6. Conjecture

Fixn € N, withn > 3. If m € Rxy is sufficiently large, {a; : 0 < i <
n— 1} C R, there exists h € R[z| of degree 2n — 1, with the property
that;

RO(m) =a;, 0<i<n—1 (i)
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A (m+L)=0,0<i<n—1 (i)
[l pmm+ 19| < C
for some C' € R~g, independent of m suﬁiciently large and, if

™M (m) > 0, b (x) 1y >0, if K™ (m) < 0, h™ 1y < 0.
In particularly;

mi n
[ W) ()| da = |an-1], ()

The same conjecture applies with # and % replacing %

|[m m+ ‘[m m+

Proof. We sketch a proof based on the special case n = 3, which was
shown in Lemma 0.5 of [3], leaving the details to the reader, (*). We
have that h(z) = (z—(m+=))"p(x) where p(x) is a polynomial satisfies
condition (7). Computing the derivatives h¥(m), for 0 <i < n—1, we
obtain n linear equations involving the unknowns p®* (m),0 <i<n-—1,
of the form;

o S2EE) — g, (0<i<n—1) ()
which we can solve for p®(m), 0 < i < n — 1, using the fact
that the matrix (dix)o<i<n—10<k<i i lower triangular and |d;| = 1,

LIf ao > 0, a1 > 0, there does not exist a smooth function A on the interval
(m,m+ L), with h(m) = ag, ¥'(m) = a1, h(m+ =) =0, h/(m+ %) = 0, such that
A" > 0 or b < 0. To see this, if b > 0, using the MVT, we have that h'(z) >
W (m) > 0, for x € (m,m~+ 1), contradicting the fact that h'(m+-1) = 0. If " <0,
and h/(z) has no roots in the interval (m,m+ L), then as h’( ) >0, A (z) >0on
(m,m+ L), and h is increasing on (m, m+ L), so that h(m+ L) > h(m) = ag > 0,
contradicting the fact that h(m + L) = 0. Otherwise, if / ( ) has a root in the
interval (m,m + ), as B < 0, it attains a max1mum at xg € (m,m + ). Using
the MVT again, we must have that for y € (zo, m+ L), h/(y) < h/(z) = 0 so that
h’(m + L) < 0, contradicting the fact that h/(m + +) = 0.

One step requires the verification that for a computable polynomial 7, of
degree n — 1, r,(1) # 0, which is highly unlikely on generic grounds and the fact
that r3(1) # 1, although r2(1) = 1, see footnote 1. The geometric idea is that
allowing for inflexionary type curves, where we can have points zg,; € (m,m + m)
for which h(")(zg;) = 0, where 2 < i < n — 1, the end conditions can be satisfied
while still having h(")\(mymﬁ_%) >0 or h(”)|(m7m+%) < 0. However, you still need
to do a concrete calculation, which in the case of verifying the conjecture for all
n € N, n > 3, would involve finding the exact pattern in the coefficients obtained
in the proof of Lemma 0.5 of [3]. We actually only need the result for some n > 14
in the rest of this paper.
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for 0 <i <n —1. Then we can take;
pla) = 3202 p(m)(x — m)!

so that h has degree n+ (n — 1) = 2n — 1. It is clear from (x), that
we have;

PO (m) = 31, cwaigm™F, (0 <i<n—1)
where (cix)o<i<n—1,0<k<i 1S & real matrix, so that p(x) has the form;

pla) = iy v’ (x4)

Up_1-i = Z;é ragem™tF 4 Z?:o sym? 1 (0<i<n-—1)

fOl" real matrices (Tik)ogign_lpgkgn_l and (Sil)ogign_lpglgi.

It is then clear, using the product rule and (*x), that;

() = Zk Zo wia”

where wy, = 2pagm® > F + O(M33) (0<k<n-—1)

By homogeneity, it is then clear that the real roots of h™(z) are of
the form ts,m + O(1), where t,, € R, 1 < so < n — 1, and ¢, satisfies
a polynomial r(x) of degree n — 1, which is effectlvely computable for
given n. We can exclude any roots in the interval [m,m + %], for suf-

ficiently large m, provided ¢y, # 1, for 1 < sy < n — 1, which we can
check by showing that r(1) # 0. We have that;

Byl = 1@ = (m + 1)'p()
< LYy pO(m)(z — m)|
< L Zn 1 |p(z)(m

Z Zk o lciklai- k|mZ:f

IN
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< Yy Yoo lealaikl = €, (m > 1)
The last claim is just the FTC.
O
Lemma 0.7. If [a,b] C R, with a,b finite, n > 3, and {g; : 0 < j <

n—1} C C™([a,b]), then, if m € Ry is sufficiently large, there exists
h e C®(m,m + #] X |a,b]), with the property that;

) .
aaxjh’ m,y) _gj( ) Yy € [a’ab]7 (Z)

0 (m+ Ly, y) =0, y € [a,b], (i)

|h|[m,m+#]x [a,b] | <C

for some C' € R~q, independent of m suﬁlciently large, and, if
Ph(m,y) >0, Lh(z,y) >0, forx € [m,m+-5], and if £2(m,y) <0,

ox™ 7 Oxm

Fh(z,y) <0, forx € [m,m+ 5], (). In partzcularly;

fm+ "h

m dx™

@ ldz = |gn-1(y)|

Moreover, fori e N, 2 oy " has the property that;

2b(m,y) =g (), y € [a,b], (i)'

ZEh(m+ L5 y) =0, y € [a,b], (i1

o'h
yt l[m,m+ 2]>< (a,b]

<

for some C; € Rsq, independent of m suﬁﬁczently large, and, if

i+n
gyzam’i( y) > 0, aayzazn (z,y) >0, forx € [m,m+—5 L1, and Zfayzamn (m,y) <

0, aay:g;f; (z,y) <0, for x € [m,m+ 5], (). In particularly;

m+—5 | gitn i
e |2y olde = g, (y)

Proof. For the construction of h in the first part, just use the proof of
Lemma 0.6, replacing the constant coefficients {a; : 0 < j <n—1} CR
with the data {g;(y) : 0 < j < m — 1}. The properties (i), (i7) are
then clear. Noting that [a,b] is a finite interval and {g; : 0 < j <
n — 1} € C*([a,b]), by continuity, there exists a constant D, with
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maz(|gj(y)] : 0 < j < n—1y € [a,b]) < D, so, as in the proof
of Lemma 0.5 in [3], we can use the bound C' = > ., | L;D, for
m > 1. The proof of (%) follows uniformly in y, as in the proof of
Lemma 0.5 in [3], for sufficiently large m, again using the fact that the
data {g;(y) : 0 < j <n—1,y € [a,b]} is bounded. The next claim is
just the FTC again. For the second part, when we calculate 8—; for
1 € N, we are just differentiating the coefficients which are linear in
the data {g;(y) : 0 < j < n — 1}, so we obtain a function which fits
the data {gj(’)(y) :0<j<n-—1} and (i)', (it)’ follow. Noting that, for
ieN, {g](-i) :0<j <n-—1} Cc C*([a,b]), again by continuity, there
exist constants D;, with max(]g](-i)(y)] :0<j<n-1y¢€lab]) <D,
so, again, as in the proof of Lemma 0.5 in [3]|, we can use the bound
Ci = > o<jen_1 LiDi, for m > 1. The proof of (xx) follows uniformly
in y, for each ¢ € N/, as in the proof of Lemma 0.5 in [3], for sufficiently
large m, again using the fact that the data {gj(l)(y) 0<j<n—-1ly€
[a,b]} is bounded. The last claim is again just the FTC. O

Lemma 0.8. If [a,b] C R, [¢,d] C R,with a,b,c,d finite, n > 3, and
{g; : 0 <j<n—1} C C®([a,b] x [c,d]), then, if m € R~¢ is suffi-
ciently large, there exists h € C™([m,m+ 5] x [a,b] x [c, d]), with the
property that;

() .
aaxjh’(m,y,z) = gj(wa); <y7 Z) € [a’ab] X [67 d]; (Z)

222 (m+ 25,4,2) =0, (y,2) € [a,b] x [¢,d], (i1)

|h|[m,m+#]x[a,b]><[c,d]| <C

for some C' € R~q, independent of m suﬁlcz’ently large and, if

Sh(m,y,z) >0, Th(x,y,2) > 0, forxz € [m,m+-5], and if Tk(m,y, 2) <

0, & h(x y,2) <0, forx € m,m+ #], (*). In particularly;

m+ n
fm gaﬂ]} |(:r,y,z)|d$ = |gn—1<y7 Z)|

Moreover, for (i,k) C N?,0<j<n-—1, %, has the property
that;

i+j+k ditkyg .
%T;(m,y7 ) ayzaz <y7 ) (y,Z) € [CL, b] X [Ca d]7 (Z)/

L (5, y,2) = 0, (3,2) € [a,b] % [e,d], (i)
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dtkp
8y1‘82k‘[mm+ 3]><[ab}><[cd]’ Zk

for some C;), € Rso, independent of m sufficiently large, and, if
ai+k+nh 8z+k+nh
W(m y,2)>0, W(Z’ Y,z ) > 0, for x € [m,m—i—#], and

. i+k+n i+k+n
fag:;zzagn< 7y) <07 %(I Y,z )<07 fOTl’E [mvm—i_%]) (**)

In particularly;

41 it+k+n Jitkg,
j;;n m? |8?ﬂdz—k8£" (x7y,z)|dl' = | 8yigzk1(y’z)|

Proof. For the construction of A in the first part, just use the proof of
Lemma 0.6, replacing the constant coefficients {a; : 0 < j <n—1} CR
with the data {g;(y,z) : 0 < j < n — 1}. The properties (i), (ii) are
then clear. Noting that [a,b] X [c,d] is compact and {g; : 0 < j <
n—1} € C*(la,b] X [c,d]), by continuity, there exists a constant D,
with maz(|g;(y, 2)] : 0 <7 <n—1,(y,2) € [a,b] X [¢,d]) < D, so, as in
the proof of Lemma 0.6, we can use the bound C' =3, | L;D, for
m > 1. The proof of (x) follows uniformly in y, as in the proof of 0.6,
for sufficiently large m, again using the fact that the data {g;(y, z) : 0 <
j<n-—1,(y,2) € |a,b]} is bounded. The next claim is just the FTC
again. For the second part, when we calculate 2 o 8'2, for (1,7 € N?,
we are just differentiating the coefficients which are linear in the data
{gj(y,2) : 0 < j <n—1}, so we obtain a function which fits the data

6z+k

{8y’8z (y,2) : 0 < j < n—1} and (i)', (it)" follow. Noting that, for
(i,k) € N?, {ayzaz 0<j<n-—1} Cc C%(a, b] [c,d]), again by

continuity, there exist constants D; 5, with maz(| 2% By’ azk Uy, 2)]:0<5<
n—1,y € [a,b] X [c,d]) < D;, so, again, as in the proof of Lemma 0.6,
we can use the bound C;;, = Zogjgn—l L;D;y, for m > 1. The proof of
(xx) follows uniformly in (y, z), for each (i, k) € N2, as in the proof of

Lemma 0.6, for sufficiently large m, again using the fact that the data
itk .

g;—a?k(y) :0<j<n-—1,(y,2) € la,b] X [c,d]} is bounded. The last

claim is again just the FTC. U

Lemma 0.9. For f € C*(R?) with 812114;23; bounded by some constant
F € Reg, for 0 < iy +1iy < 27. Then for sufficiently large m, there
exists an inflexionary approximation sequence { fn, : m € N}, with the

property that,

max(f’R2 %ldxdyu f'R2 |%|dl’dy) < Gm2
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for some G € R+, for sufficiently large m.

Proof. Define f,, = f on C,,, so that (ii) of Definition 0.2 is satisfied.
Using two applications of Lemma 0.7 with n = 14, changing to a verti-
cal rather than horizontal orientation, and the fact that, for 0 < <13,
lz] < m, g;;:|(x7m) and %ﬂ(%_m) define smooth functions on [—m, m],
we can extend fp to R = {(z,y) : |z < mm < |y < m+ 5},
such that f,,|R; satisfies conditions (iv), (v) of Definition 0.2, where
Ry ={(z,y) : |t] <m,0 < |y| <m+ -5}. Again, using two applica-
tions of Lemma 0.7 with n = 14, and the original horizontal orientation,

and the fact that, for 0 < i < 13,0 < |y| < m + mz, 8;;;7 (g and
% (—m,y) define smooth functions on [ m— 12 M+ — L], we can extend

fmto S ={(z,y) :m <|z|] <m+ 5,0 < ]y\ < m+ -}, such that
fm|Cpy 1 satisfies conditions (vi), (mz) of Definition 0.2. Conditions

(1), (7i7) are then clear. We then have, using (i7i), that;

Jreo |Gl ddy = [o | |5k |dwdy
-}

_ Ofm Ofm Ofm
- f|:):\§m,|y|§m |8z14 |d'rdy+f|x\§m,m§\y|§m+ﬁ |6$14 |dmdy+fm§\z|§m+#,|y|§m Oxl4

+fm<|g:\<m+ 27m<\y|<m—|— 1 |B 14|d$dy

O fm o O fm
fR2 |W|d:1:dy = fcm+ﬁ |ay14 |dxdy

— Ofm Ofm Ofm
- f|x\§m,|y|§m |6y14 |dmdy+flw\§m7m§|y|§m+ﬁ ’83114 ‘dxdy—i_fmélx\éerﬁJylﬁm ‘By“

+fm<|:1:\<m+ 2,m<\y|<m+ 1 ’8y14|dxdy( )

We then have the following cases, using the second clause in Lemma
0.7 repeatedly with the appropriate orientations;

Case 1;

f|:(;|§m,|y\§m 8:1:14 ‘d.ﬁﬂdy

= |dxdy < F'm?

= f|x\<m ly|<m 8:(;

flrlﬁm,ly\ﬁm ayM | ddy
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= Jitzmyizm |5yt ldody < Fm?
Case 2;
f|m|<m m<y|<m+ Ly | 9z e #|dzdy
= Jietzm Uyicms 1, |5k |dy) da
< 25 Jiaj<m Crad
< QW%CM
— 4%
m
Case 3;
fm<|x|<m+ Jyl<m QZ{T |dzdy
= j‘|y|§m(fm§|x\§m+# \%Mw)dy
= ﬁy|§m(|% (my) T |g;3;3 |(—m y))dl/
<4dmF
Case 4.
fmﬁlxlﬁm-&-ﬁ,mSIy\SM—k;Z | oz 14 #*|dxdy
= fmg‘y|§m+#(fm<‘x|<m+ |6$i{2n|dx)dy
= fmswy|gm+$(|aali—{? o) + 15 Cmapdy
< m<y<mt 1y Cisady + [ m-dy<-m Ciz2dy
< %501“) (the constants {Ci31,Ci32} coming from the two

applications of Lemma 0.7 at the two boundaries)

Case 5;

]8 f’" dxdy

f|:c|<m m<\y|<m+
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- ﬁx‘ﬁm(fm<|y‘<m+ ‘B;Z{Md )dx
o (2 1280, )
<4dmF

Case 6;

f|y\<m m<|z|<m+ 2y ’ ay14 |d:1:dy

- ﬁy|gm(fm<|x\<m+ \851;{1’ |dx)dy

i 914 i 914
< [ (50 D2k () + | S Dil 20k | (=, )y
< 5m)F(CE D)

_ 4y p(ZEa D)

Case 7.

= |dxdy

fm<|x|<m+ Sy m<y|[<m+-Ly | dy 14

614fm
= Im<Jy|<m4+25 (fmg‘x|§m+# |y [ d) dy

13 81+14 82+14
< # fm§|y\§m+i<zi:0 Li,14 x’8y14 |(my + Lz 14 xlﬁyl“ |(—m y))dy
i+13 1 9i+13 gi+13
- # Zzl Lz 14<|aa$13y13| m,m)| + |8:vi3y1f3 |(m —m) | + Bmlaylfr’ |(—m,m)| +
8i+13f
Byt | (-m.—m)|)
4F(Zz— i,14)

(the constants L; 14,0 < i < 13 coming from the proof
of Lemma O 7)

Combining the seven cases and (x), we obtain, for sufficiently large
m, that;

fR2 o 14|dxdy<Fm +4C“ +4mF+M < Gm?

Jreo |22z |dady < Fm? + 4mF 4 4F SzoP) o g Tus) < Gy?

O
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Lemma 0.10. For f € CY(R?) with % bounded by some con-
stant F' € Rg, for 0 < i1 + iy + i3 < 40. Then for sufficiently large
m, there exists an inflexionary approximation sequence { fm : m € N'},

with the property that;
max( [ |a v |dadydz, [ ]8 w|dadydz, [ \8 n)drdydz) < Gm?

for some G € R+, for sufficiently large m.

Proof. Define f,, = f on W,,, so that (ii) of Definition 0.3 is satisfied.
Using two applications of Lemma 0.8 with n = 14, with a horizontal
orientation, and the fact that, for 0 <7 < 13,0 < |y[ <m,0<|z| <m
g;{ (m,9,2) and ( m.y,») define smooth functions on [—m, m|?, we can
extend f,, to A1 ={(z,y,2) :m < |z <m+ 25,0< |y <m0 <
|z| < 'm}, such that f,,| Ay satisfies conditions (iv), (v) of Definition 0.3,
where Ay = {(z,y,2) : 0 < |z| <m+ 25,0 < Jy| <m,0 < |z] < m}.
Again, using two applications of Lemma 0.8 with n = 14 again, this
time with a vertical orientation, and the fact that for 0 < <13,
0<|z|] <m+ 3,0<y \<m |mz) and 2fm |(x —m,z) define

smooth functions on [—m — =5, m —|— ] [—m m] We can extend fy,
to Az = {(z,y,2) : 0 < |z| <m+ 3,m<|y|<m+ ,0 < 2| < mj},
such that f,,| A4 satisfies Condltlons (vi), (vii) of Deﬁmtlon 0.3, where
Ay ={(r,9.2) 1 0< o] Sm+ 5.0 g <m+ 2,0 < |2 <m).
Again, using two applications of Lemma 0.8 with n = 14 again, this
time with a lateral orientation, and the fact that, for 0 < ¢ < 13,

0<|z] <m+ 37 0 <yl < m+ m37 8E)£T|(x,y7m) and %kw,yv—m)
define smooth functions on [—m — m3 ,m + %]2, we can extend f,, to

Wt 1 such that fm|Wm+ . satisfies conditions (viii), (iz) of Definition

0.3. "
Conditions (i), (74i) are then clear. We then have, using (7ii), that;

0). fpo | Sildadydz = [y, | |2l dudyd:
M3

_ Ofm
= Jialzm.pyi<m o1 <m | oats [dxdydz+ [, <lo|<m+ Ly [y <m,2 |<m’ax14|d$dydz

Ofm
+ St <mmetyt<me 25 zi<m o [A0AYAzA Loy i oyt 3 Jel<m

+fz|<m ly|<mm<|z|<m+ s |ax14|dxdydz+fm<|x\<m+ oyl <mm<| 2| <mt |8x

Ofm | dxdydz

8:014

= |dedydz
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Ofm
+ Sitsmmsiylsms dpmeieicms 4 |57 [ oy o iyt msplm 1y 15

D). [rs |9l |dzdydz = [, o | 0L | ey
mT o3

By14 ayl4

- f|z\<m ly|<m,|z|[<m |8y14 |dxdydz—|—f <|z|<m4+-L5 —3 Jyl<m,|z|<m |3y |d£L’dde

Ofm Ofm
+f|x|§m,m§|y|§m+#,\z|5m’6y14|dmdydz+fm§\x|§m+ m<ly|<m+Ly o Jel<m | gyt ddydz

Ofm Ofm
*_ﬁﬂéwMMSnmnﬂdgm+;%|ayM|dxdyd%+f <MKWH73JM<WHn<pKan |ayM’dxdde
Ofm
+ Jial<mmlyl<m+ 2 o m<|z|<mt Ly |ay14 | dedydz+ [, m<z|<mtLy m<|y|<mt g m<[z|<m+ |3yt
Ofm
j%3|6 M|dxdydz::_ﬁy ]7|5£m¢dxdydz
m+ﬁ
- f|w\<m ly|<m,|z|<m |8z |d$dydz+f <|z\<m+ =,|y|<m,|z|<m ’8214 \da:dydz
O fm Ofm
+ fgc|<m m<|y|<m+-L —5.lzl<m |8 14 ]d:cdydz—i—f <|z|<m+-L -3 m<|y|<m+— —5.lzl<m 9214 |dxdyd"7’
+ fﬂc|<m ly|<m, m<\z|<m+ |8214 ]dxdydz—i—f <|x‘<m+ -3 Jy|<m, m<|z\<m+ ‘ 9214 |dIdde
Ofm
- Siat<m melyl<ms g am< o< g |5 ARAYA [t vty 2 <y |5

(%)

We then have the following cases, using the second clause in Lemma
0.8 repeatedly with the appropriate orientations;

Case 1;

=~ |dxdydz

flmlﬁm,ly\ﬁmﬂ\zlém 83:14

- f|1‘\<m ly|<m,|z|<m 8z14 \dxdydz < Fm?

14
%E%%\dxdydz

flxlémly\émv\ZISm

- f|ff\<m ly|<m,|z|<m |6y14 \dxdydz < Fm3

= |dxdydz

fIZISm,Iy\Smﬂ\Zlém 8214

- f|z\<m ly|<m,|z|<m 8214 |d$dyd2 < Fm?

|dxdyc

|dxdya

|dxdya
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Case 2;

% |dxdydz

fm§|x|§m+#,\y|§m,|z|§m

| o O _Im|dx)dydz

- ﬁy|§m,\z|§m(fm<lw\<m+

= Jiyi<metcm! St i) + | 5k ) dyddz
< 2(2m)2F

= 8m?F

Case 3;

14
| aay% |dxdydz

Jmsiatm 25 jyi<m,jzi<m
|2t | do)dyd
< emperam(| S Dil 2L
< 5 (2m)*F(32, Di)

_ 8F(ZI, D)

= -ﬁy|§m,\z|§m(fm<|z\<m+

Case 4;
fm<|x|<m+ ‘y|<m| |<m a 14 |dxdde

|81414 |dx)dydz

(my, 2)+ 2212,

- J]y|§m,\z|3m(fm<|w\<m+

1 81814f
< m3 \yISm7|Z|Sm<| Zz 119214927

< Z(2m)*F(32, Dy)

_ 8F(C12, D)
m

Case 5.

0 |dxdydz

ﬁxlSm,mS\y|§m+$,lz|§m |ats

(m,y, 2)+| 312 D

81814
8y148x1

81814]0
i1 921497

(—m,y, 2))dydz

(_m7 Y, Z))dydz
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o14 ™

< — Cl4d$U

— m3 J]z|<m,|z|<m

= (27”)2 %014,0

— 8o

m
Csse 6.
flx|<m m<ly|[<m+—z.[z |<m’ giﬁ"ldfcdydz
- ﬁw\§m7|2|§m(f\y|§m+,§ ’8;414 |dy)dxdz
< | <m. |z <m C0,140T

= (2m)2%00714

8C0,14
m

Case 7.

flzlém,mﬁ\y|§m+%,|z|gm ay14 i*|drdyd>

14 = |dy)dxdz

- f|z\<m |z|<m(fm<|y\<m+ 1 |

= ﬁx\§m7|z|§m(’%‘(mvmvz) + | 525 -,z ) ddz)
< 2(2m)*F

= 8m?F

Case 8.

6 O fm | dxdydz

Jnslol<mt 5 mspylsms 2y ol m

%Wy)dxdz

= fmg\x|§m+%,|z|§m(fm§\y|§m+$ | Ozl
1 8z+14814
< m3 fm<|z|<m+ 3,|z\<m<21 =0 Ll 14

61+14614
8y18m14_|(.1‘ m Z)—i-Lz 14

Oy’ 3331_4 |(x mz))da:dz
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81’—0—13814 8i+13814 8z+13614
- W z|<m(Z Li,14<|Wmf|(m,m,z)|+|W|(m,—mz | | 8y181.13f| —m,m,z)|

81—4—13@14
| 3yzam13f| fm,fm,z)l))dz

< <2m) 4F(Z}ig L;14)

m

_ 8F(X12, Lija)
= i il

(the constants L; 14,0 < i < 13 coming from the proof of Lemma 0.7)

Case 9.

814fm
fm§|z|§m+#,m5|y\§m+ﬁ,|z\§m‘ ayit |dvdydz

= fm<\x|<m+ 3,| |<m(fm<\y|<m+— | 8y14 |dy>dl’d2
813 T 813 -
= fm<\x|<m+ |z |<m(| 3y{3 ’(ac,m,z) |_3y{3 (3;7_m,z))dl’dz

< %(\/‘lzlgm Ciz1dz + f|z\§m Ci32dz)

S (2m) ma:c(CiZ,Sl,Clgyg)

2max(C13,1,C13,2)
2

(the constants {C}31,Ci32} coming from the two applications of
Lemma 0.7 at the two boundaries)

Case 10.

814
fm§|x|§m+ m<y|<m+ L |z\<m‘ 2 | dwdydz

814 .
= fmg\x|§m+#,|z|§m(fm<\y|<m+ | 82{4 |dy>d£ll'd2

az+14fm 61+14
Dytoz14 |(a:m z) +L; 14| 8yzazl4 ’(a:,—m,z))dxdz

1 13
< 3 Sociems e (S0 L

BH— +14 81+ +14
S # MSm(Z Z Lz 14 ]114(|W|(mmz I |3xga]yzag4 m,—m,z)'

gitit+14 gitit14
+ gy mam,) | + | grayrae [(-m,—m,2)]) )2

AR S8  LitaLly,
< (2m) (0 22520 Lij1aLyin4)

mb
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8F (32,2032 0 LinaLjina)
5
m

(the constants L; 14, Lj;14,0 < ¢ < 13,0 < j < 13 coming from two
applications of the proof of Lemma 0.8)

Case 11.

L |a O | dadydz

f|m|<m ly|<m,m<|z |<m+

O\ dz)dady

= f|z\§m,|y|§m(fm§|z\§m+$ | Ozxld

2
S m3 \x|§m,|y|§m(E14rO)

= (2777,)2 %EIZL,O

8F14,0
m

Case 12.

= |dedydz

Jat<m yi<mmss |<met g bt

1 ‘a T4 ’dz>dxdy

- f|a:\§m,|y|§m(fm<|z\<m+

2
75 Jial<im fyl<m (£0.14)

IA

= (2m)2%E0714

8Fo,14
m

(the constants Ey 14, F140 coming from an application of Lemma 0.8
with a different orientation)

Case 13.

f|m|<m ly|<m,m<|z |<m+ L |Bz

= |drdydz

= L/‘|z\§m,|y|§m(fm<|z\<m+ 1 |8 14|dZ)d£L'dy

of 0,
= j‘|x‘§m,|y|§m<’8213‘<x y7 >+ ’82{3|(x7y7m))dxdy

< 2(2m)*F
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= 8m?*F
Case 14.

L | o O _Im|dxdydz

fm<|x|<m+ Jy|<m, m<|z\<m+

= fm<‘x|<m+ 3,|y|<m(fm<‘ |<m+ 1 | oz 14 |dZ)dIdy

1 81+1 z+ 4

< 245 Srctorcms 2 om0 Lial Gttt | (2, . m) 4 Lial Gt (,y, —m)drdy
- 1 \y|<m(fm<|x|<m+ 3(2 o Lija(
= 5 [em (20 Linal Zgatsl (m, g, m)+ 3220 Lia
+ 2 Lial St | (m, y,m) + Y120 Li s
< (2m) 5 (AF)(3,2 Liga)

8F(>- 20 Lijna)
m2

z+14

i+14
gk O ke |z, y, —m))dz)dy

W’(ﬂﬂ Yy,m )+Lz 14(

1+13
aazzaxif3|< m7y7 m)

81+13

321311]; ’(_m) Y, _m))dy

Case 15.

L \ 5 I | dxdydz

fm<|z|<m+ 3 Jy|<m, m<|z\<m+

T m<\x|<m+1 |y\<m<fm<| |<m+ L | 8y

lt|dz)dady

7.+14

ot |(x, y, —m))dzdy

3z+14

azTQyJ;lK‘ray? )+L114

1 13
Sm3 m<|z|<m+ |y|<m(zi:O 1,14

81+14 z+14

= % \y|§m(fm§|m|§m+#(2§ Liva(|gzmmt azzaym | (x,y,m m)+L;, 14(| azzaym g (7, y, —m))dz)dy

13 13 gititia
< # \yISm(Zi=0 ijo Li,14Li,j,14\W¢ayfm|(m, y,m)
i+j+14
+Z Z Lz 14 Z,],l4’8§]+iayfl4|(_m7y7m)
i+7+14
+3232 Z;io Li,14Li,j,14|—azj8JZiay{4 |(m, y, —m)
Hitit1a

+ 30,20 2052 LiaLi sl sz | (—m, y, —m))dy

< (2m) 5 (4F) (20 22520 LinaLijaa)



26

TRISTRAM DE PIRO

8F (32,2032 0 LijnaLi ja)
m5

Case 16.

‘ 9z 14 |d:l:dydz

fm§|x|§m+#,\ylﬁm,mSIZ\SerTi3
- fm<\x|<m+ 3,|y|<m(fm§\z|§m+ni3 | 0z

= fm<\a:|<m+ |y|<m(| 13 |<l’ y,m ) + | 8z13

9 813
B flylgm(fm§|x‘§m+m%( 82{3 (l’ Yy, m ) ’ 8z{§n

6z+13

S # ‘ylgm(z Lz 13’8:1;18z13 |(m7 y,m )_'_ZZ 0 LZ 13’8:1;18z13 |(_m7 Yy,

8z+13

+ 2213 Lz 13| 01t 9213 |(TTI,, Y, _m) + 2113 Lz 13|

< (2m) X (4F)(Z o Liiz)

8F(X12, Lias)
= el 8

Cases 17-19 are similar to cases 14-16, interchanging the orders of
integration, with case 17 corresponding to case 15, case 18 correspond-

ot |dz)drdy

= (z,y, —

81+13
0z19213

m))dzdy

8z+13

‘<_m7 Yy,—m

ing to case 14 and case 19 corresponding to case 16, so that;

Case 17.

\ 0 fm |dxdydz

f|x|§m,m§\y|§m+ 3 ,m<|z\<m+ 14

8F(2i20 3520 LijiaLija)
5

<

- m

Case 18.

| O fm |dxdydz

f|x|<m m<|y|<m+ - -3 ,m<|z\<m+ Tyt

< 8F(3-120 Lia)

iy m2
Case 19.

9 fm = |dedydz

f|z|<mm<\y|<m+ 3,m<|z\<m—i— L, | Oz

|($7 Y, —m))dx)dy

))

m)
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< 8P Lixs)

— m2
Case 20.

1 | e O _fo|dxdydz

fm<|x|<m+ 3,m<|y\<m+ 3m<\z|<m+

| o 9 fm = |dz)dxdy

- fmg\ﬂgm—s—#,mﬂy\gm—k# (fm<| \<m+

az+14 81+14
< e m§|x|§m+$vm§\y|sm+ﬁ(2i L; 14|Bz’8a:14|(x’y’ )+Zz o Li, 14|8z18z14|(x y, —m))dxdy

= o Jrmtotzms 2 Unsiyizms 2 (2o Lina(| G (2, y.m)
+ 3120 Lina(| 5 (@, y, —m))dy)da

< # m§|m|§m+$<z Zz o Ligalijaa %K%m? m)
+ Z;io >ite Li,l4h,j,14|%|($, —m,m)

+ 30320 Yoo LinaLijaal gt (,m, —m)
+ z Z Lz 14 i,7,14
giti+13 3i+j+13f

13 13 13 13
= 5 (X520 Xi20 LinaLijal gz | (my my m) 437320 3702 LinaLi sl sorgargers | (—m, m, m)

i+7+14
s (@, —m, —m))dz

13 13 §itit1s 13 13 gitit1s
+ Zj:() Zi:O Li,14Li,j,14|W|(m, —m, m)+2j:0 Zi:O Li714Li,j,l4|W'aZ—iamf13|<_ma —-m, m)
giti+13 13 13 giti+13
+ Zgl'io Zig Li,14Li,j,14|Wl(m> m,—m)+3 70> i, Li,l4Li,j,14’W‘<_m’ m, —m)
3i+j+13f

+ Z Z Lz 14 Z,],14’W|(m7 —m, _m)

ai+j+13f

13 13
+ 2520 2ico LinaLijual 5 5gmges | (—m, —m, —m))
S _F6<Z Zz 0 LZ 14L 7],14)
Case 21.
fm<|x|<m+ Lz m<y|[<m+ Lz m<|z|<m4 25 ’ oy 14 i*|dwdydz

0 fm |dz)dxdy

= fmg\w|§m+$,m§|y\§m+$(fm§|z\§m+# | oyl
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i+14 Hi+14
< # m<e|<m+ Ly m<|y|<m+ L5 (ZZ o Lia —%21354 |(z,y,m )—i—ZZ o Lina W&Km,y, —m))dxdy
+14 13 8z+14 _
- % \x|<m+%(fm<|y|<m+L(Zil L; 14(|88;ay14 |(ZE, Y, m)—l—zi L; 14(| 82’8y14 |(m, Y, —m))dy)a
<m+ - <lyl<m+-L5
13 git+13
= % m§|x|§m+¢(z i 14!6273;13\(90,771,m)
1+13
+ zzl Lz 14 %z’@yfi:‘ ’(x, —m, m)
1+13
+Zz o Lia %Km,m, —m)
az+13f
+ ZZ 0 Lz 14 WK:E, —m, —m))dg:
SRR 13 13 §i+i+13
= #(Z;io Yo L"’ML"J’B’%Km’ m,m)+3200 > i, Li,14Li,j,13|Wiayfl3l(_ma m,m)
§i+i+13 f

i+7+13
+ Zjl'io Zio Li,14Li,j,13’aaxa+iazf13|(m> —m, m)+2}io Zilio Li,14Li,j,13’W¢@y13‘(_m, —m,m)

ai+j+13f ai+j+13f

+ Z;io Zzlig Li,14Li,j,13|Wiay13|(m, m, —m)—l—zjlio Zzlio Li’14Li,j,13|m‘(—m, m, —m)

itj13
+ Z;io Zio Lz‘,14Lz',j,13|aaﬂ-a+@;I3|(m, —m, —m)

§ititidy

+ Z;io Zio Li,14Li,j,13|W|(—m, —m, —m))

8F(332 0512 LijaLi j1s)
< e

Case 22.

fm<|x|<m+ 3 ;m<|y|[<m+ 3,m<\z|<m+ 1 | Oz 14 |dl'dyd2

|8 e |dz)dxdy

= fmg\x|§m+#,m§|y\§m+#(fm<|z\<m+ 9z

o 613f
- fmg\x|§m+#,m§|y\§m+# (|T1:;n (l’, Y, m)

m)+| St | (2, y, —m))dy)dx

13
+ |2 (2, y, —m))dady

al3fm
= Jnsiaizms 2 Unsiyicms 2, (21 (2. 9,

o +13
S 7,,13 a:|<m+ (Z Lz 13| (‘;y’bﬁzl?’ |(ZL‘, m, m)

+3°20 L

+ Zzl Lz 13

1+13
%le];’(za —m, m)

az+13
8y7~8z13

= |(x,m,—m)
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Zz 0 Lz 13
giti+13 §ititizy

S#(Z Z o Lis 2,3,13|Wi(9;13|(m7m7m)+z Z o LiisL 17],13|W|(—m,m,m)

6z+1sf | ([L‘

Dyiaa13 I\Ts =M, —m))dx

Hiti+13 Jitit1d s

13 13 13 13
+ Zj:(] Zi:(] Li,lgLi,j,13]W|(m, —m, m)—l-zjzo Zi:o Li,13Li,j,l3’W‘<_m7 —-m, m)

6i+j+13f @i+j+13f

13 13 13 13
+ ijo Zizo Li,13Li,j,l3’W|(mv m, _m>+2j:0 Zi:O Li,l3Li,j,13’W‘(_m’ m,—m)

ai+j+13f

13 13
+ 20520 2ico LinsLijasl gy (m, —m, —m)

itj13
+ 320 2020 LinaLi jasl sgmas | (—m, —m, —m))

< 8F (3320302 LinaLijis)
> 6

It is then clear from (x), summing the bounds from the individual
cases 1-19, as at the end of the proof of Lemma 0.9, that there exists
a constant G € R~ with;

maz( [, |9l |dedydz, [ ]%\dwdydz, Jrs | 285 | dwdydz) < Gm?

for sufficiently large m.

Lemma 0.11. Let {f,, : m € N} be the inflerionary sequence con-
structed in Lemma 0.10, then for k € R3, k # 0, sufficiently large m,
we have that there exists D € R~g, independent of m, with;

| (fm)( )‘§||4

Moreover, for sufficiently large m, F(fn) € L'(R?).

A similar result holds for the inflexionary sequence {fm : m € N'},
constructed in Lemma 0.9, for k # 0, sufficiently large m, we have that
there exists D € R~g, independent of m, with;

[F(f) (R)] < £

Moreover, for sufficiently large m, F(fn) € LY(R?).
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Proof. For (ki, ko, k3) € R3, using repeated integration by parts, and
the fact that;

Oxl4) 8y147 0214

g 5 52} CORY), for 1< i<13

where C,(R?) is the space of continuous functions with compact sup-
port, we have, for m € N;

F(ode + 08 + 238)(R)

= ol (%t + 5t —%éﬁiﬁr)e‘“ﬂwe—“@ye—MBdedydz

= ((ik1) "+ (ikg) "+ (ik3z) 1) % I I 2 f(w,y, 2) e FimemiRvemiksz dudyd
= (k" = k' - k§4)]:(fm)( )

so that, for k # 0;

14
o+ &+ 2 ) (B)

|]:<fm)(E)| S = (k14+k14+k14) (T)

We have, using the result of Lemma 0.10, for sufficiently large m,
that;

614 m 814 m 614 m 7.
PGk + Stf 1 2id) ()|

14 14 4 . . .
@) s|f733 61{4 aay{4 B;Z{Z")6_Zk1x€_’k2y€_m3zda:dydz\
< by Jro (551 + 1501 + | 5 )dadydz
< Sz (t)

so that, combining (1) and (11), we have, for k # 0, sufficiently large
m;
_ s
U] < 2 et (4

Using polar coordinates ki = rsin(0)cos(¢), ko = rsin(0)sin(¢p),
ks =rcos(0), 0 <0 <m, —m < ¢ <, we have that;
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1 1 1
RITHEFE) — 717 a(0.9)

where (6, ¢) = sin'*(0)(cos'*(¢) + sin'*(¢)) + cos'(0)

We have that, in the range 0 < 0 < 7, —7 < ¢ < 7, with 0 # 7,
6] # 3

a(f,¢) =0
iff tan'*(0)(1 + tan'*(9)) + m =0
iff tan'(0) (1 + tan'*(¢)) = — gy

which has no solution, as the two sides of the equation have opposite
signs.

and, with 0 = T, |¢| £ 2
a(6,6) =0

i cos™(¢) + sin'4(¢) = 0
iff tan'(¢) = —1

which has no solution, as the two sides of the equation have opposite
signs.

and, with 0 # 7, , |¢| = 5
alf,9) =0

iff cos'(0) + sin'*(9) =0
iff tan'(0) = —1

which has no solution, as the two sides of the equation have opposite
signs.

and, with 0 = 7, , |¢| = §



32 TRISTRAM DE PIRO
af,¢) =0
iff 1=20

which is not the case. It follows that «(f,¢) = 0 has no solution
in the range 0 < 0 < 7w, —m < ¢ < m. By continuity, compactness
of [07] x [—m, 7| and the fact that o(5,%) = 1, restricting the in-
terval [—m, 7], there exists € > 0, with a(0,¢) > ¢, for 0 < 0 < ,
—m < ¢ < m. In particularly;

1 < 1
IR S o

=1
E‘k‘l4

so that, from (x);

[F(fun) (k)] < 2 g

(2m)2
Qm
|k|14
where D = 3¢

e(2m)?2
For the final claim, we have, for 1 <7 < 3, m € N, as f,, is supported
on W, 1 and continuous, that z;f,, € L*(R?) and, differentiating un-
der the integral sign;

OF (fm)(k e~ kT I
|4%4wbw i1 o (@) dm)
ﬂ;@&mmzfmﬂﬂ

S ng |z; fn (T)|dT

= WH%M(E)W

so that M is bounded, and, in particularly, F(f,,) is continu-

ous, for m € N. It follows, using the first result, and polar coordinates,
that, for n > 1, sufficiently large m;

| s FU) RV < L0 1F ) BV + [ 5 | ) ()| AR
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4Cn7r Dm3
< + Jro\B@n e

< AGwm [T 28 |2 sin(6) |drdfde

< 40"’7 +2D7*m? foo Tdf;

< 40"” +2D7%m [111 15°

_ 4C, w3 + 2D7%m3
- 3 11ntl

where Cy, = [|F(fin)|p@.nlloo; 50 that F(f) € L'(R?).
A similar proof works in the two dimensional case.

O

Lemma 0.12. Let {f,, : m € N} be the inflexionary sequences con-
structed in Lemmas 0.9 and 0.10, then;

2 | fmldzdy <

f[ m— ﬁm'f‘ﬁ} \[=m,m]?

for sufficiently large m € N, where E € R~q.

ﬁ7m7%7m+%}3\[7m,m}3 |fm|dl’dydz S %

for sufficiently large m € N, where E € Ryg.

Proof. By the construction, we obtain the result that for an inflex-
ionary approximation sequence f,, in R? or R?;

|fm’[fmfﬁ,m+#]2\[fm,m]2 <D

|fm| m——g,m+—]3\[ m,m]3 <D ( )

independently of m. We give the proof of ( %) in the 3- dimensional
case. We have that, for m < z < m + 3, m <y < m+ 5

m§2§m+m3,

| ful(,y, 2) < 002 Di| &L

+
S Z 213 DU%yJ]a;Z (x,m,m)

(z,y,m)
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< B p Y8 p NI 9HRg,
< Doito Di 2220 Dig D op=o Diji DxFOyI 0z |(m, m, m)
I3 13 13 itithf
=220 Di X270 Dij 2oi20 Dijk gorayras

13
< O3 ijn=o DiDij Diji

(m, m,m)

=C Yo DiDiDy = D

The proof of the bound for the other regions is similar and left to
the reader, as is the two dimensional case. It follows that, using the
binomial theorem;

Sty s g\ em e [l iy

_1
< Darea([-m — #, m -+ #]2 \ [-m,m]?)
=4D((m + =5)* —m?)
4D(m? + % + # —m?)

<

3w

and;

3 | frn|dxdyd =

f[—m—#,m-{—ﬁp\[—m,m
< Dvol([-m — %,m + #]3 \ [-m,m]?)
=8D((m + 25)* —m?)

8D(m? + 3m% 4 3m g 1o g3

<

3=

for m sufficiently large, where E' € R+.

O

Lemma 0.13. Let f € C*®(R3) be quasi split normal, with the Fourier
transform F defined in [2]. Let {f. : m € N} be the inflexionary se-
quence constructed in Lemma 0.10. Let F be the ordinary Fourier
transform, defined for each f,,, then, for any (ko1 koz, ko3), with ko #
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0, koa # 0, kog # 0, the sequence {F(fn) : m € N'} converges pointwise
and uniformly to F(f) on R3*\ (Jk1| < ko1) U (Jk2| < ko2) U (Jks| < ko3)-
In particularly, F(f) € C(R*\ {k1 =0Uky =0Uks =0}). A corre-
sponding result holds in dimension 2.

Proof. For g € C.(R?) or g quasi split normal, and m € N, define;

Fulg)(k) = 25 [, g(@)e*TdT

For E eR3 \ (|k§1| < ]{301) U (|k32| < kog) U (|]{73| < k?og), m e N, € >0,

we have, using Lemma 0.12;
FUDE-FUn) B < IFDE ~Fnl OIHE ) )~ Fnfu) B
HEn)(B) — F () ()

— IFU)E) — Bl D)) + 1Enln)(B) — F(fu) (B
<NF()R) = Fnl DR+ | frn,, fr(@)e - da]

< IFUE) = Fa DO+ Lo, o, Uni@lam

< \F()F) ~ FulDB) +  (BB)

By the result in [2], we have that, for sufficiently large m;

IF(f)(R) = Fulf)(F)| < Cortozios (p)

m

Combining (B) and (BB), we obtain that;

|F(f)(R) = F(fon) (k)] < Shonshoztot?

<e€

c E
for m > M. As € > 0 was arbitrary, we obtain the first

result. The fact that each F (fm) is continuous, follows from the differ-
entiability F(f,,), which is a consequence of the fact that z;f,,(T has
compact support, for 1 < ¢ < 3. The last result then follows immedi-
ately from the fact that ko1 # 0, ko2 # 0, koz # 0 were arbitrary and
the uniform limit of continuous functions is continuous. The last claim
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is similar.
O

Lemma 0.14. Let f € C™(R?), with % bounded for 0 <

11+1i9+1i3 < 40, f quasi split normal, and of moderate decrease. Then;

f@) =FHF()@), TR

where, for g € L*(R?);

FH9)@) = i s 9B R

The same claim holds in dimension 2.

Proof. By Lemma 0.1, we have that F(f) € L'(R?). Let {f,, : m €
N} be the inflexionary approximating sequence, given by Lemma 0.9,
then, for sufficiently large m, f,, € L'(R?) and F(f,,) € L*(R?) by
Lemma 0.11. It follows, see [1] or the method of [4], that for such m,
fm = F HF(fm)), (x**), By the proof of Lemma 0.13, we have that,
for k with min(|ki|, |ko|, |ks]) > € > 0, |F(f)(k) — F(fm)(k)| < £,
(B). By the fact that f is of very moderate decrease, we have that
F(f) = F(fm) € L*(R?), and by the classical theory, and by the proof

of Lemma 0.12, we have that;
1FC) = F ) B
=[If = faull72(ra)
< e FEA+ Jo o linl'en

< Jro\n@m [F17dT + 5
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where {C, F,G} C Rxo. It follows that ||F(f) — F(fm)||r2rs) — 0
as m — oo. In particularly, there exists a constant H € R~y with
|F(f) = F(fm)llr2rsy < H, for sufficiently large m. By the Cauchy
Schwarz inequality, we have that, for m sufficiently large;

F () = Ffmllse

< [[(F() = FFmD pom 2@ 1@ |2 m@m)

IN

\/_\/ngB(ﬁ wllL2(B@m)

3
2V Frn?2
V3m

3

= Kn2> (A)

1
m?2

Using the fact from Lemma 0.1, that F(f) € L'(R), and of rapid
decrease, for § > 0 arbitrary, we have that;

S\ | F ) FLR < 6

for n € N, sufficiently large, n > ny. Choosing n € N, with
m = [n%], and using (A), Lemma 0.11, we have, for T € R?, that;

IFHF@) = FHFE)@] = [FHFS) ) = F(fm) ()]

‘ fB(o n) E) - F(fmxg))eZkEdE

271') 3

% (s F(F)(R) = F(frn) (k)| dE
+fR3\B(5,n) |‘F( )( |dk+fR3\B |]:'(fm)( )|d%)
g U@ FE) = FUEn)ENAE+ 6+ [ 5, e dR)

L (K"Q +5+ fR3\3(0 )ﬁ;lqg dk)

2m )? 3m?2
1 Kn? Dnto
et Gy T 0+ Jros i i dF)

L (& 454272 [ Polap)

(27)3 “nb r>n rl4

IN

IN

| /\

IN
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— 13(£1+5+2D7T2n10[ —1 ]oo)

(2m)2 "nb 13rt3in
1 K 2D7?
= £ +o+
20
3
(2m)?

for sufficiently large n > ng, or m > my, so that, as e > 0 and § > 0
were arbitrary, for 7 € R?;

iMoo (F(fm))(T) = FLF()(E), (5% 5x)

and, by Definition 0.3, (% % %), ( % %%);

F@) = limu oo frn(T) = limim oo 7 (F(fin))(Z) = F ' F(f) ()
The proof of the final claim in dimension 2 is identical.

U

The following results are not required for the proof of the inversion
theorem but are required in [4].

Definition 0.15. We say that f : R® — R is of very moderate de-
crease if | f(Z)| < % for|z| > C, C € Reg. We say that f : R> -+ R
is of moderate decrease n if | f(Z)| < % for|z| > C, C € Rsg, n > 2.

We just say that f is of moderate decrease if f is of moderate de-
crease 2. We call {0, ¢} generic if sin(8)cos(¢) # 0, sin(0)sin(¢) # 0,
cos(0) #0

Lemma 0.16. Let f be of very moderate decrease and quasi split nor-

mal, f € CY(R?), such that the partial derivatives {% 1 <

i+ 7+ k < 41} are of moderate decrease, and of moderate decrease
1+ 7+ k41, then for 1 <i<3;
EF(f)(k) € CHR3\ (k1 =0Uky = 0U k3 = 0))

limE—}O,Eé(k1=0Uk2=0Uk3:0)ki]:(f)(E) =0

The same results hold for k:l-}"(gTJ;), 1 <i < j <3, when f €
C2(R3).
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Making a polar coordinate change, for {6, ¢} generic, r]:(f)g o(1)
CHRso), lim,—orF(f)es(r) =0, and similarly for r]-"( ), 1<y
3.

IA M

%)

_ F(55)(k) )
We have that F(f)(k) € L*(R?), {‘TJ 11 <j5<3}cLY(R?

<

Q

2 _
F2®)
and {\E—P]

:1<i,j <3} LY(RY

For any given € > 0, there exists § > 0, for 1 < j < 3, such that for
a generic translation | with Iy # 0, lo # 0, I3 # 0;

mazx |fo T-Few (r)dr, |fo ar T]:eqsz )( ))dr]) <

uniformly in {6, ¢}.

Proof. As % is of moderate decrease and quasi split normal, for fixed
Y, 2, [y is of very moderate decrease and analytic at infinity, we have
for ky # 0, ky # 0, k3 # 0;

F(5h) = —5(%) L, oaliMy oolimMyy oo [T [ |70 SL(T)e T dy daodurs

. 1 . . T2 r3 T 0 —ik —i(k k.
— lemm_ml@mm_)oo f_w f_ (limy, oo | " ai( e R1mL gy et ko2 ths®s) ) dap g

- (27r) L iMool iMyy 0 fm f (Limn, oo ([fe™ 1] +iky fil f(@)e *r1da,)
e—ilkazathans) g i,

= zkl gy} Limyy o liMyy o0 2 ffig(limrlﬁoo f:l f(@)e 1 dyy et Ramathas) do, doy
= zk:1 = lzmrlémlzmm_}mlzmw%mf ff; fjiS f(f)e_iE'deleEQdIg

- z-klf(f)@) (TT)

the limit interchange being justified by the calculation in [2]. It fol-
lows that, for ky # 0, ky # 0, k3 # 0, we have that;

W F(F)(k) = —iF(gh)

and similarly;
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kiF(f)(k) = —iF(5L) (A), for 1 <i < 3and ky #0, ky # 0, ks # 0.

It follows that, using the fact that;

g . LETNS) —ik —ik
F (1, kg, kg) = limp, soolimy, oo [ [70 O (1, 2y, w3)e 226~ ham3 iy g

is of moderate decrease, the DCT and the FTC, and the fact that
fy,> is of very moderate decrease;

lim%%ﬂ,%%(klz(]UkQZOng:O)klf(f)(E)

—ilimE_)o’Eg(klzoqu:Ong:O)‘F(f)(%)(E)

= —Lelimy_ o5 / : : n " 0f (7 -k
= (271-)%lzmk_>07k¢(klzoukzzouk3:0)llmrlﬁoolzmrgﬁoolzmrgﬁoo f—'rl f f r3 8$ dl’lde‘le‘g

_ r3 —ik
=5 )3lzmkﬁo ks —30,ks 20,3 20 My oaliy oo [72 72 (Limng, 0 [, SE(T)e *1mrdy )
™

6_1(k2$2+k53x3)dx2dx3

o 9 i(k k
= (2 ) llmk2—>0 k3—0,k27£0, k375012m7"2—>00l7/m7’3—)00f f f 0o ai dx ) (ka2 +kaws) dedxii
s

= B W) lzmk2_>0 k3 —0,k27£0, k#olzmm_,oolzmr?)_wo f f_ri?)([f]iooo)efi(kzx2+k3x3)d$2d1‘3

=0 (E)
Similarly;

limE—m,Eg(klzoukgzoukgzo)kz‘]:(f)(E) 0,1<:<3

As f € C"(R?), we have, by the product rule, that z; 5 8f € C1(R?),
1<i<j<3. As f is of very moderate decrease and;

afl+m+n .
pRpEr ek 1 <l+m+n <40}
are of very moderate decrease, we have, by repeated application of
the product rule again, that;

al+m+n 8f

i 0<l4+m4+n<40},1<i<j<3

8xl1 Oxy' Oz
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are bounded. By Lemma 0.4, there exists an inflexionary approxi-
mation sequence g, for ZL‘ Wlth the properties that;

(i) gm € C1B1314(R3)

g 5
(7). gmlcmmpp = TG |immp

(G0 S 2yt g\ 19 ()T < 55

(l'U) gm|R3\[—m—#,m+ﬁ}3 — O

By the construction of g, we have that f,, = 2% is an approxima-
tion sequence for , with the property that;

(Z)/ fm c 013,13,14(']?/3)

(id)". fm|[ m,m|3 am|[ m,m]3

(@) Sty s 2y o (BT < 5
()" fm’R3\[fm—$7m+#]3 =0

Following through the proof of Lemma 0.13, as 2L 5, 18 quasi split nor-
mal of moderate decrease and, therefore, of very moderate decrease, we
have that JF(f,,) converges uniformly to F (%) on compact subsets of
R\ (k1 =0Uky = 0U ks = 0), sothat F(3L) € C(R®\ (k1 = 0U ko = 0U k3 = 0)),
As zz;f € LYR3), for 1 <4 < j < 3, we have that F(f,,) is twice
differentiable, in particularly, F(f,) € C'(R3). As f is quasi split
normal, so is g—i and aj%. It follows that for {m,n} C N, with m > n,
differentiating under the integral sign, using the DCT, property (iii)
of an inflexionary approximating sequence, and the fact that xgi is
of very moderate decrease and quasi split normal, for |ki| > ¢ > 0,
|ka| > €3 >0, |ks| > €3 > 0, we have that;

|8f(fm) _ 9F(fn) ’
6k1 8’61

= |8k1 fR3 fm _Zk Tdx — 8 f’RS fn —zk.idf|

- |f7z3 —iT) [ (T)eFTAT — [y —iz1 fo(T)e T dT|
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= Lo o — ) (@)

< ot Ume a2\ e 90 @[y 1o\ 190(T) AT

+| f[,m’mp\[ nn)3 1 gfl _Zkfde

where C(k) is uniformly bounded on the region |k:1| >e€ >0, |ko| >
€2 > 0, |ks| > es > 0. It follows that the sequence {Z afm) :m e N}
is uniformly Cauchy on the region |ki| > € > 0, |ko| > € > 0,
|ks| > e3 > 0, and converges uniformly. By considering inflexionary

sequences for ya and z , we can similarly show that the sequences
OF (fm)

“ore +m € N} and {af(f’" : m € N} are uniformly Cauchy on
the region |ki| > ¢ > 0, |k2| > e > 0, |ks] > €3 > 0, and con-
verge uniformly. As F(f,,) converges uniformly to F (%) on the re-
gions |k1| > € > 0, |ko| > € > 0, |k3| > €5 > 0, it follows that
F(%) e CHR3\ (ki =0Uky =0Uks =0)). The same result folds
for F(%) and .7:(%), so by (A);

(ki F(F)(R), ko F (f)(R), ks F(f)(R)} € CHRP\ (ky = 0U ky = 0 U ks = 0))
(B)

It follows that, changing to polars;

B = G R+ a0 (D(B)

_ mFDE | FOE | kFU)E
o : Ok + : Oko + : Oks (WW>

so that, for generic {0, ¢}, rF(f)(r)os € C'(Rso), by (B). More-

over;
Limy—orF(f) ()0,
= 1iMi 0,010 2 i (0.6) 0.1 20,0020 10 20K 1 F () (F)
= Limi(p,) 075 [1Mk(0.6) 0. k10.ka0 ks 20K T () (R)

= Limng g, 5055 LM (9,0) 0 k1 20, ka0, ks 20K 3T () (k)
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. . K2 K2\ -
= lsz(97¢)_>Oszgn(k71)(1 et E)lsz(G,qb)—@,kzl#ka#O,k:ﬁ#Okl‘F(f)<k)
. . k2 k2. =
= l’lmE(e,@HoSZg”(@)(l + é + é)lsz(G,qb)eﬁ,kl;éo,kg;éo,kg;éOkQ'F(f)(k)

) . k2 k‘2 . 7.
= limzgg gy 05191 (ks) (1 + 5 + MR 6) 5 k1 20 ka0 ks 20 s T () (K)

=0

as the cases max(|ks|, |ks|) < |ki|, max(|ki|, |ks|) < |k2| and maz(|ky], |ke|) <

|k3| are exhaustive.

Clearly, we can repeat the above arguments for 2 7 1 <e< 3, and
f € C*2(R3), using the fact that is of moderate decrease, in partic-

8l+m+n of
dx;

ularly of very moderate decrease, with the higher derivatives ety
of moderate decrease [+m+n—+2, in particularly of moderate decrease
l+m+n+1.

For the next claim, we have, F(f) € L'(R?), (R), by Lemma 0.1.
A similar calculation shows that, as gf is of moderate decrease 2, that
fe L2+E(R3), for € > 0. Applying the Haussdorff-Young inequality,
F(8L) € L379(R?), for ¢ > 0. In particular, due to the decay again,

F (%) € L*(R?). Locally, on B(0,1), for § > 0;
f B(0,1) [k|3- 5dk
- f0§0§7r,—7r§¢<¢ f sdr dfdg¢
< 222
=212 < o0

so that % € L*°(B(0,1)), in particularly |f’1€| € L*(B(0,1)). As

F(%L) € L2(B(0,1)), by the Cauchy Schwarz inequality, we obtain

that 2. F(5)® € L'(B(0,1)), and by the decay, we have that P50 €

] ||
F(2L
% € LY(R3),for1 <i < 3.

We also have, using the fact that aa’; - is of moderate decrease and
J

quasi split normal, 1 <14 < j < 3, using the argument (7'T") twice, that

L'(R?). Similar arguments show that
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for ky # 0, ky # 0, ks # 0;
F(55) = (k) (ik;) F () (R)
= —kik; F(f) (k)
so that;

F(2L)(®)

= g F(N(®)

Wlth, for k@ % O, kj 7£ O,

ik
|||k|2 sl e k32)5|§1

kl k1 ) a ko +’€2

T | = Isign(ky)sign (ko]
so that;

Flo2d)(R) _
—m | S IF(NF)
FGE®

and, by (R), F(f)(k) € L'(R?), so that T € LY(R?).

The last claim follows from the fact that, for I, with I[; #0, Iy # 0,
I3 # 0, the translation F3(£L)(k) € CY(B(0,¢€)), for some € > 0. In
particular, given € > 0, there exists 6 > 0, such that;

max |fo Tj:eqsz( ) )dr], |fo dr T}—Ml( )( ))drl) <

uniformly in {6, ¢}.
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